Пусть в треугольнике ABC угол A равен a, угол C равен b, проведены биссектрисы AD и CE, которые пересекаются в точке O (см. рисунок). Рассмотрим треугольник AOC. Сумма его углов равна 180 градусам, тогда угол AOC равен 180-1/2BAC-1/2BCA=180-DAC-ECA=180-1/2(a+b). Угол, под которым пересекаются две прямые - это наименьший из углов, которые получаются при их пересечении. Докажем, что угол EOA будет меньше угла AOC, тогда угол EOA - угол, под которым пересекаются биссектрисы. Действительно, угол EOA является смежным с углом AOC, тогда он равен 1/2(a+b). Так как a+b<180, 1/2(a+b)<90 и 1/2(a+b)<180-1/2(a+b), то есть, какими бы ни были углы a и b, угол EOA всегда будет меньше угла AOC. Окончательный ответ - 1/2(a+b).
1) радиус вписанной окружности=сторона*корень3/6=10*корень3/6=5*корень3/3, длина окружности=2пи*радиус=2пи*5*корень3/3=10пи*корень3/3, 2)радиус описанной окружности около правильного многоугольника=сторона/(2*sin(180/n)), где n -количество углов, радиус=12/(2*sin(180/6))=12/(2*(1/2))=12, в шестиугольнике радиус описанной = стороне=12, радиус вписанной окружности в квадрат=сторона/2, 12=сторона/2, сторона=12*2=24, площадь квадрата=24*24=576 3) треугольник АВС, уголА=90, АС=3., АВ=4, ВС = корень (АС в квадрате+АВ в квадрате)=корень(9+16)=5, радиус вписанной окружности=(АС+АВ-АС)/2=(3+4-5)/2=1, длина окружности=2пи*радиус=2пи*1=2пи, площадь круга=пи*радиус в квадрате=пи
Нижняя часть - 10,5см
Середина - 7см
Верхняя тоже 10,5см
10,5х2 +7=28