Основи рівнобічної трапеції дорівнюють 8 см і 18 см. Через центр О кола, вписаного в цю трапецію, проведено перпендикуляр OK до площини трапеції, OK = 8 см. Знайдіть відстань від точки К до сторiн трапеції.
Так как треугольник ABC равнобедренный, то у него углы при основании равны ∠А=∠В. Биссектриса делит угол пополам, поэтому α=∠А/2 и β=∠В/2. Но ∠А=∠В и поэтому α=β. Значит, треугольник ADB также равнобедренный.
Найдём углы α и β. Сумма внутренних углов треугольника равна 180°: α + β + 100° = 180°. В силу этого α = β = (180-100)/2 = 40°.
Тогда ∠CАВ=∠СВА=2·α=2·40°=80°. Опять используем свойство:
Дан прямоугольный треугольник с катетами "а" и "в". Радиус "R" его описанной окружности равен 6,5, а радиус "r" вписанной окружности равен 2.
Если радиус описанной окружности равен 6,5, то гипотенуза равна 2*6,5 = 13. Отрезки катетов до точки касания вписанной окружности равны а - 2 и в - 2. По свойству касательных гипотенуза равна сумме этих отрезков: а - 2 + в - 2 = 13 или а + в = 17. По Пифагору 13² = а² + в². Возведём в квадрат равенство а + в = 17: а² + 2ав + в² = 289. Заменим а² + в² = 169. 2ав = 289 - 169 = 120, ав = 120/2 = 60. Из выражения а + в = 17 выразим в = 17 - а и подставим в ав = 60. Подучим: а(17 - а) = 60 или 17а - а² = 60. Получили квадратное уравнение а² - 17а + 60 = 0. Квадратное уравнение, решаем относительно a: Ищем дискриминант: D=(-17)^2-4*1*60=289-4*60=289-240=49;Дискриминант больше 0, уравнение имеет 2 корня: a_1=(√49-(-17))/(2*1)=(7-(-17))/2=(7+17)/2=24/2=12;a_2=(-√49-(-17))/(2*1)=(-7-(-17))/2=(-7+17)/2=10/2=5. Полученные результаты и есть размеры катетов.
20°
Объяснение:
Дано (см. рисунок):
ΔАВС - равнобедренный
AD - биссектриса угла А
BD - биссектриса угла В
∠ADB = 100°
Найти: ∠С
Решение.
Так как треугольник ABC равнобедренный, то у него углы при основании равны ∠А=∠В. Биссектриса делит угол пополам, поэтому α=∠А/2 и β=∠В/2. Но ∠А=∠В и поэтому α=β. Значит, треугольник ADB также равнобедренный.
Найдём углы α и β. Сумма внутренних углов треугольника равна 180°: α + β + 100° = 180°. В силу этого α = β = (180-100)/2 = 40°.
Тогда ∠CАВ=∠СВА=2·α=2·40°=80°. Опять используем свойство:
Сумма внутренних углов треугольника равна 180°.
В силу этого ∠CАВ+∠СВА+∠С=180°. Отсюда
∠C=180°-(∠CАВ+∠СВА)=180°-(80°+80°)=180°-160°=20°.
ответ: 20°