Параллелограмм АВСД. Противоположные стороны парраллелограмма равны по определению, т.е. АВ=СД и АД=ВС.
1случай АВ+ВС+СД=42. 2АВ+ВС=42
По условию АВ+ВС+СД+ДА=46. 2АВ+2ВС=46
Система из двух уравнений: 2АВ+ВС=42 (1)
2АВ+2ВС=46 (2)
Из (1) выразить ВС: ВС=42-2АВ
Подставим во второе: 2АВ+84-4АВ=46. -2АВ=-38. АВ=19
ПОдставим результат в (1): 38+ВС=42. ВС=4
ответ: АВ=СД=19. ВС=АД=4
2случай. ВС+СД+ДА=42. 2АД+СД=42 (1)
2СД+2АД=46 (2)
Из (1) ДС=42-2АД
В (2) 84-4АД+2АД=46
-2АД=-38
АД=19
СД=42-38=4
ответ: АД=ВС=19, АВ=СД=4
Параллелограмм АВСД. Противоположные стороны парраллелограмма равны по определению, т.е. АВ=СД и АД=ВС.
1случай АВ+ВС+СД=42. 2АВ+ВС=42
По условию АВ+ВС+СД+ДА=46. 2АВ+2ВС=46
Система из двух уравнений: 2АВ+ВС=42 (1)
2АВ+2ВС=46 (2)
Из (1) выразить ВС: ВС=42-2АВ
Подставим во второе: 2АВ+84-4АВ=46. -2АВ=-38. АВ=19
ПОдставим результат в (1): 38+ВС=42. ВС=4
ответ: АВ=СД=19. ВС=АД=4
2случай. ВС+СД+ДА=42. 2АД+СД=42 (1)
2СД+2АД=46 (2)
Из (1) ДС=42-2АД
В (2) 84-4АД+2АД=46
-2АД=-38
АД=19
СД=42-38=4
ответ: АД=ВС=19, АВ=СД=4
Пусть сторона основания - а = 6√3.
АО = а√3/3 = 6√3 · √3 / 3 = 6 как радиус описанной около основания окружности.
ΔSOA: ∠SOA = 90°, по теореме Пифагора
SA = √(SO² + AO²) = √(9 + 36) = √45 = 3√5
ОН = а√3/6 = 6√3 · √3 / 6 = 3 как радиус окружности, вписанной в основание.
ΔSOH: ∠SOH = 90°, по теореме Пифагора
SH = √(SO² + OH²) = √(9 + 9) = 3√2
Sбок = 1/2 Pabc · SH = 1/2 · 3 · 6√3 · 3√2 = 27√6