Все, что курсивом - "теория", нужная для решения. В конце - само решение. Расстояние между скрещивающимися прямыми в общем случае находится так. Надо найти две параллельные плоскости, каждая из который содержит одну из прямых. Расстояние между этими плоскостями и будет искомым расстоянием. Плоскость A1DC1 содержит прямую DC1. Треугольник A1DC1 - равносторонний, что означает, что трехмерная фигура D1A1DC1 - правильная треугольная пирамида, и вершина D1 проектируется на основание A1DC1 в центр K правильного треугольника A1DC1, то есть D1K перпендикулярно плоскости A1DC1 (это - высота пирамиды). Кроме того, фигура BA1DC1 - тоже правильная треугольная пирамида (это - вообще правильный тетраэдр, все его ребра равны), и поэтому BK - высота этого тетраэдра к грани A1DC1, то есть BK перпендикулярно A1DC1. Через точку K можно провести только одну прямую, перпендикулярную плоскости A1DC1, и на этой прямой лежат точки B и D1. То есть, доказано, что плоскость A1DC1 перпендикулярна диагонали куба BD1. Точно также можно доказать, что BD1 перпендикулярно плоскости AB1C, и поэтому плоскости AB1C и A1DC1 параллельны. Но параллельность этих плоскостей и так очевидна, поскольку A1C1 II AC; A1D II B1C; и разумеется, AB1 II DC1; но для доказательства параллельности достаточно указать две пары параллельных прямых. Однако то, что обе эти плоскости перпендикулярны диагонали BD1 - важно. Если рассмотреть внимательнее тетраэдр BA1DC1, можно заметить, что плоскость AB1C пересекает "боковое ребро" BA1 в середине (диагонали квадрата A1B и AB1 делятся точкой пересечения пополам), поэтому сечение тетраэдра BA1DC1, параллельное грани тетраэдра A1DC1, - это такая "средняя плоскость", то есть она разделит пополам и остальные боковые ребра (BD и BC1, что можно увидеть и так) и, главное - высоту BK (по теореме Фалеса). Аналогично можно показать, что плоскость A1DC1 делит пополам высоту тетраэдра D1AB1C. Если обозначить K1 - центр треугольника AB1C, то получается D1K1 = KK1 = K1B; Все это - длинная теория, которую труднее набрать, чем понять. Поскольку KK1 - отрезок прямой BD1, перпендикулярной обеим плоскостям A1DC1 и AB1C, то это и есть расстояние между этими плоскостями, а заодно - и расстояние между скрещивающимися прямыми DC1 и CB1. Длина диагонали BD = 2√3, KK1 = 2√3/3;
ВС^2=AB^2+AC^2 - 2*AB*AC*cosA=11^2+8^2 - 2*11*8*cos60=121+64-2*88*1/2=97
BC=√97 см
б)
AC^2=AB^2+BC^2 - 2*AB*BC*cosB=13^2+7^2-2*13*7*cos60=169+49-2*13*7*1/2=127
АС=√127 см
2
теорема косинусов
а)
cos120= - cos60
NP^2=MN^2+MP^2 -2 MN*MP*cos120=7^2+15^2-2*7*15*(-cos60)=
=49+225-2*7*15*(-1/2)=379
NP=√379 см
б)
NP^2=
3
cos120= - cos60
а) меньшую диагональ (ВD)
лежит напротив острого угла <60
BD^2=6^2+8^2-2*6*8*cos60=36+64-2*48*(1/2)=52
BD=√52=2√13 см
б) большую диагональ (АС)
лежит напротив тупого угла <120
AC^2=6^2+8^2-2*6*8*cos120=36+64-2*48*(-1/2)=148
AC=√148=2√37 см
4
а) его стороны равны 8 мм и 10 мм, а одна из диагоналей равна 14 мм;
14^2=8^2+10^2 -2*8*10*cos<A
196=64+100 - 160*cos<A
32= - 160*cos<A
cos<A= - 32/160 =-1/5= -0.2
б) его стороны равны 12 дм и 14 дм, а одна из диагоналей равна 20 дм.
20^2=12^2+14^2 -2*12*14*cos<B
400=144+196-336* cos<B
60 =-336* cos<B
cos<B = - 60/336 = - 5/28
5
диагональ (d)и две стороны (a) (b) образуют треугольник
значит третий угол треугольника <A=180-20-60=100 град
дальше по теореме синусов
a/sin20=b/sin60=d/sinA=25/sin100
a=sin20*25/sin100=0.3420*25/0.9848=8.7 см
b= sin60*25/sin100=√3/2*25/0.9848=22 см
6
угол <С=180-<A-<B=180-30-40=110
по теореме синусов
AC/sin<B=BC/sin<A=AB/sin<C=2R
AC/sin40=BC/sin30=16/sin110
AC=sin40*16/sin110= 0.6428 *16/0.9397=10.94 см =11 см
BC= sin30*16/sin110=1/2*16/0.9397= 8.5 см
радиус описанной окружности
AB/sin<C=2R
R= AB/(2*sin<C)=16 / (2*sin110)=8/ sin110 = 8.5 см
7
8
углы параллелограмма А и В - односторонние
<A - напротив диагонали d1
<B=180-<A - напротив диагонали d2
cosA= - cosB=
d1^2=a^2+b^2-2ab*cosA
d2^2= a^2+b^2-2ab*cosB = a^2+b^2-2ab*(-cosA)= a^2+b^2+2ab*cosA
d1^2+d2^2 = a^2+b^2-2ab*cosA + a^2+b^2 +2ab*cosA = a^2+b^2 + a^2+b^2 = 2 *( a^2+b^2 )
ДОКАЗАНО сумма квадратов диагоналей равна сумме квадратов (ЧЕТЫРЕХ)сторон
9
10
11
12
13
Вроде это, Заранее незочто