М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Nadya1111111111111
Nadya1111111111111
27.03.2022 02:37 •  Геометрия

Из точки А к плоскости α проведены два отрезка АС и АВ . Точка D принадлежит АВ, точка Е принадлежит АС. DЕ параллельна α и равна 12 см. Найти длину отрезка ВС, если .

👇
Открыть все ответы
Ответ:
Valeri050608
Valeri050608
27.03.2022
1.
Радиус  r вписанной в прямоугольный треугольник определяется по формуле : r =(a+b-c)/2 =(3+4 -√(3²+4²))/2 =(3+4-5)/2 =1.
S =π*r₁² ⇒  r₁ =√(S/π)=√(25/8π) =√((25/4)/2π) = √6,25/√(2π)  < 1 = r.
значит можно.
2. Не может.
k₁ , 2k₁ ; k₂ , 2k₂ ; k₃ , 2k₃ .
Если :
AD : DB  = 1 : 2  ⇒AD = k₁ , DB  = 2k₁  ;  AB =3k₁.
BE : EC  = 1 : 2  ⇒BE = k₂ , EC  =  2k₂  ;  BC=3k₂.
CF : FA   =  1 : 2 ⇒CF = k₃ , FA  =  2k₃  ; AC =3k₃.
DB =BE ⇒k₂ =2k₁ ;
EC =CF ⇒k₃ =2k₂ =4k₁ .
AB =3k₁; BC =3k₂ =6k₁ ; AC =3k₃=3*4k₁ =12k₁
⇒ AB+BC< AC ,что невозможно.

Если :
AD : DB  = 1 : 2  ⇒AD = k₁ , DB  = 2k₁  ;  AB =3k₁.
BE : EC  = 2 : 1  ⇒BE = 2k₂ , EC  =  k₂  ;  BC=3k₂.
DB =BE ⇒2k₁=2k₂ ⇒AB =BC тогда  точка касания  F середина  AC.
4,6(39 оценок)
Ответ:
annaaristova
annaaristova
27.03.2022

Объяснение:

Свойство биссектрисы угла треугольника. Решение треугольников. Вычисление биссектрис, медиан, высот, радиусов вписанной и описанной окружностей. Формулы площади треугольника: формула Герона, выражение площади треугольника через радиус вписанной и описанной окружностей.

Вычисление углов с вершиной внутри и вне круга, угла между хордой и касательной.

Теорема о произведении отрезков хорд. Теорема о касательной и секущей. Теорема о сумме квадратов сторон и диагоналей параллелограмма

Вписанные и описанные многоугольники. Свойства и признаки вписанных и описанных четырехугольников.

Геометрические места точек.

Решение задач с геометрических преобразований и геометрических мест.

Теорема Чевы и теорема Менелая.

Эллипс, гипербола, парабола как геометрические места точек.

Неразрешимость классических задач на построение.

Треугольникомназывается фигура, которая состоит из трёх точек, не лежащих на одной прямой, и трёх отрезков, попарно соединяющих эти точки. Точки называются вершинамитреугольника, а  отрезки - его сторонами.

Биссектриса

Биссектриса угла – это луч, который исходит из его вершины, проходит между его сторонами и делит данный угол пополам. Биссектрисой треугольника называется отрезок биссектрисы угла треугольника, соединяющий вершину с точкой на противолежащей стороне этого треугольника.

Свойства биссектрис треугольника

· Биссектриса угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон.

· Биссектрисы внутренних углов треугольника пересекаются в одной точке. Это точка называется центром вписанной окружности.

· Биссектрисы внутреннего и внешнего углов перпендикулярны.

· Биссектрисы одного внутреннего и двух внешних углов треугольника пересекаются в одной точке. Эта точка — центр одной из трех вневписанных окружностей этого треугольника.

· Основания биссектрис двух внутренних и одного внешнего углов треугольника лежат на одной прямой, если биссектриса внешнего угла не параллельна противоположной стороне треугольника.

4,4(36 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ