В равнобедренном треугольнике АВС основание АС и боковая сторона АВ соответственно равны 14 см и 21 см. Биссектриса AD угла А при основании треугольника делит сторону ВС на отрезки ВD и DС. Найдите длины этих отрезков.
Найдите площадь прямоугольного треугольника с гипотенузой 10 и углом 15°∘ ----- Площадь прямоугольного треугольника можно найти произведением его катетов, деленному на 2, можно и произведением сторон на синус угла между ними, деленному на 2. Пусть в ∆ АВС угол С=90°, угол В=15º, гипотенуза АВ=10 по условию Тогда ВС=АВ*cos15°= ≈10*0,9659=9,659 sin 15º=≈0,2588 S=10*9,659*0,2588 :2= ≈12,4997 (ед. площади) ----------- Это приближенное значение площади данного треугольника. Но можно найти точное. Для этого применим точное значение косинуса и синуса 15º ( оно есть в таблицах Этот вариант решения дан в приложении.
Дано: АВС- равнобедренный треугольник.
АМ- медиана.(18.4)
Р треугольника АВМ=79.2
Найти: Р треугольника АВС
АМ является и бессектрисой и медианой и высотой (свойства равнобедренного треугольника.)
Следовательно: Угол А делиться пополам (так как АМ является бессектрисой.) Следовательно эти половинки ровны.
АМ-общая сторона.
ВА=АС (по условию так как треугольник АВС равнобедренный.)
Следовательно треугольники АВМ=АМС (по 1 признаку.)
Следовательно Р треугольника АВС равен.
(79.2-18.4)• 2
Все готово
Объяснение: