1) апофема равна 3
2) площадь нижнего основания равно 81см²
3) площадь верхнего основания равно 1см²
4) площадь боковой поверхности 60см²
5) площадь полной поверхности 142см²
Объяснение:
MP=A'D'=1см
AM=(AD-MP)/2=(9-1)/2=8/2=4см
Теорема Пифагора
А'М=√(АА'²-АМ²)=√(5²-4²)=3см. апофема
Sбок=4*АМ(А'D'+AD)/2=4*3(1+9)/2=
=12*10/2=60см²
Sосн'=А'В'²=1²=1см²
Sосн=АВ²=9²=81см²
Sпол=Sосн'+Sосн+Sбок=60+81+1=142см²
Хотелось найти апофему через высоту пирамиды.
АС=АВ√2=9√2см
А'С'=А'В'√2=1√2см.
НК=А'С'=√2см.
АН=(АС-НК)/2=√(9√2-√2)/2=4√2
∆АА'Н- прямоугольный треугольник
Теорема Пифагора
А'Н=√(АА'²-АН²)=√(5²-(4√2)²)=√(25-32)
Условие не корректно.
Нет высоты, нет апофемы, нет площади боковой поверхности, нет площади полной поверхности.
Есть такая формула:
cos^2(x) + sin^2(x) = 1;
(косинус в квадрате + синус в квадрате равно единице)
поясню саму формулу:
если мы начертим окружность радиусом 1, и на окружности возьмём ЛЮБУЮ точку, то cos - это X этой точки, а sin это Y.
если точку назовём T, то угол XOT (0 - середина окружности, центр координат), X - точка на оси Х, справа от О.
Таким образом выражение X^2 + Y^2 - это радиус в квадрате твоей окружности. Мы взяли единичную окружность, значит x^2+y^2 = 1, так как x это косинус, а у синус:
cos^2 + sin^2 = 1
Теперь проверим твои точки:
а.) (3/4)^2 + (2/3)^2 = 9/16 + 4/9 = (к общему знаменателю) 81/144 + 64/144 = 145/144;
это не равно единице, значит невозможно.
б)(1)^2 + (-1)^2 = 2 - тоже невозможно.
ответ ни в случае а, ни в случае б равенства одновременно выполнятся не могут.
P.S. во втором случае это было очевидно без рассчетов. Там где самая правая точка окружности (x = 1) высота окружности в точности равна нулю.А максимальна высота (sin) ровно в центре, там где x = 0 (сos = 0)
Задавай вопросы если что-то непонятно