Задача3 1рис 2 рис. 1.РЕШИ ЗАДАЧУ, ИСПОЛЬЗУЯ РИСУНОК 1 ПЕРЕЧЕРТИ РИСУНОК 1,точку пересече- ния PN и ME обозначь буквой О.
ДОКАЖИ, что треугольник МОN равен треугольнику ЕОР. Найти: 1) угол Р-? если угол N=55° 2) MN-? если РЕ=4 см.
2.РЕШИ ЗАДАЧУ, ИСПОЛЬЗУЯ рисунок 2. ДОКАЗАТЬ, что треугольник ABC равен треугольнику АDС. Найти ВС, если DС=7 cм. пешите ответ который вы уверены что это правильный ответ)
Правильный шестиугольник состоит из шести правильных треугольников со стороной, равной стороне шестиугольника. Обозначим её R. Угол меньшего сектора равен 60°, а площадь - одна шестая площади круга 60/360=1/6, Sсект=Sкр/6, Sкр=πR²=144π, Sсект=24π≈75.4 см² Площадь большей части круга (большого сегмента), отделённой стороной шестиугольника равна площади круга минус площадь малого сегмента, лежащего по другую его сторону. Sбс=Sкр-Sмс. Площадь малого сегмента равна площади известного сектора за вычетом площади правильного треугольника. Sмс=Sсект-Sтр Площ. прав. тр-ка Sтр=(R²√3)/4=(144√3)/4=36√3 Sмс=24π-36√3 Sбс=144π-24π+36√3=120π+36√3≈439.34 см²
Радиус окружности описанной вокруг правильного шестиугольника равен его стороне. Площадь сектора соответствующая его центральному углу равна 60/360=1/6 части площади круга. S=πr²; Sсек.=π*12²/6=24π см². Площадь большей части круга (см. рисунок) - площадь круга за вычетом площади сегмента ограниченного стороной шестиугольника и стягивающей его дугой. Площадь этого сегмента равна площади сектора с углом 60° за вычетом площади равностороннего треугольника со стороной 12 см. Sтр.=а²sin60°/2=144√3/4=36√3 см². Sм.с.=Sсек.- Sтр.=24π-36√3 см². Площадь большей части круга - 144π-(24π-36√3)=120π+36√3 см². В полных единицах ≈ 439,2 см².
дано: ∠1 = ∠2, ∠CAB = ∠DBA
доказать: ΔАВD=ΔBAC
доказательство:
ΔАВD=ΔBA (по 1му признаку)
∠1 = ∠2
∠CAB=∠DBA
АD=BC
ответ: равные треугольники это: ΔАВD и ΔСBA
4
Объяснение:это ток на 2 рис на 1 я не смог