Все, что надо найти - это радиус вписанной окружности - он В ДАННОМ СЛУЧАЕ является проекцией апофемы на основание (причем ВСЕ апофемы равны меду собой). Высота треугольника в основании равна 6 (треугольник составлен из двух египетских треугольников со сторонами 10, 8 и 6, они приставлены друг к другу катетами длины 6:))) S = 6*16/2 = 48; P = 10+10+16 = 36;
r = 2*S/P = 8/3; Апофема равна r/cos(45) = (8/3)*корень(2), а боковая поверхность
Sboc = (1/2)*P*r*корень(2) = (можно было не вычислять r) = S*корень(2);
ответ Sboc = 48*корень(2);
В равностороннем треугольнике все очень просто. Сначала находим ВЫСОТУ из точки В, она равна 13*корень(3)/2. По идее уже тут можно воспользоваться тем, что высота - одновременно и медиана, то есть найти её (высоту-медиану) из прямоугольного треугольника с гипотенузой 13 и одним из катетов 13/2. Второй катет (то есть высота-медиана) будет как раз 13*корень(3)/2 (теорема Пифагора :)).
А теперь вспоминаем, что точка О лежит на этой медиане-высоте на расстоянии 2/3 её длины, считая от вершины.
То есть ОВ = (13*корень(3)/2)*(2/3) = 13*корень(3)/3.