Площадь квадрата, вписанного в круг, равна 16 см². Найти площадь сегмента, основанием которого является сторона квадрата.
1. Находим сторону квадрата: S=a² => a=√S = √16 = 4 (см) 2. Находим диагональ квадрата, которая является диаметром описанного круга: D²=2a² => D=√(2a²) = √32 = 4√2 (см) 3. Находим площадь круга: S₁= 1/4 πD² = 8π = 25,12 (см²) 4. Площадь четырех искомых сегментов круга равна разности между площадью круга и площадью вписанного квадрата: 4S' = S₁ - S = 25,12 - 16 = 9,12 S' = 9,12 : 4 = 2,28 (см²) ответ: 2,28 см²
Площадь квадрата, вписанного в круг, равна 16 см². Найти площадь сегмента, основанием которого является сторона квадрата.
1. Находим сторону квадрата: S=a² => a=√S = √16 = 4 (см) 2. Находим диагональ квадрата, которая является диаметром описанного круга: D²=2a² => D=√(2a²) = √32 = 4√2 (см) 3. Находим площадь круга: S₁= 1/4 πD² = 8π = 25,12 (см²) 4. Площадь четырех искомых сегментов круга равна разности между площадью круга и площадью вписанного квадрата: 4S' = S₁ - S = 25,12 - 16 = 9,12 S' = 9,12 : 4 = 2,28 (см²) ответ: 2,28 см²
Если трапеция с равными бёдрами, то скорее всего решается так: 12 / 4 = 3 - отношение оснований, а потом 45 / 3 = 15 см кв. - это площадь ))