(НЕОБХОДИМЫЕ пояснения: Вершина пирамиды проектируется в центр вписаной окружности, r = H/3)
Ладно, может и правда, нужно...
Опускаем перпендикуляр из вершины на основание. То, что это будет центр правильного треугольника, и доказывать не надо - все так симметрично, что иначе и быть не может. Но, для фана, скажу, что раз ребра равны, то и проекции их на основание будут равны, а в правильном треугольнике центр описанной окружности совпадает с центром вписаной : Далее, проводим сечение пирамиды через ребро и высоту пирамиды. То, что это сечение пройдет через высоту противоположной грани (апофему), тоже доказать несложно, поскольку эта плоскость уже содержит 2 прямых, перпендикулярных ребру... Ну, и косинус двуграного угла равен расстоянию от центра треугольника до стороны, деленному на апофему. Ладно...
Из теоремы (сумма смежныхьуглов равна 180°) следует, что если два угла равны, то смежные с ними углы равны. Допустим, углы (a1b) и (c1d) равны. Нам нужно доказать, что углы (a2b) и (c2d) тоже равны. Сумма смежных углов равна 180°. Из этого следует, что a1b + a2b = 180° и c1d + c2d = 180°. Отсюда, a2b = 180° - a1b и c2d = 180° - c1d. Так как углы (a1b) и (c1d) равны, то мы получаем, что a2b = 180° - a1b = c2d. По свойству транзитивности знака равенства следует, что a2b = c2d. Что и требовалось доказать.
(Комментарий забанен автором)
ответ 1/3
(НЕОБХОДИМЫЕ пояснения: Вершина пирамиды проектируется в центр вписаной окружности, r = H/3)
Ладно, может и правда, нужно...
Опускаем перпендикуляр из вершины на основание. То, что это будет центр правильного треугольника, и доказывать не надо - все так симметрично, что иначе и быть не может. Но, для фана, скажу, что раз ребра равны, то и проекции их на основание будут равны, а в правильном треугольнике центр описанной окружности совпадает с центром вписаной : Далее, проводим сечение пирамиды через ребро и высоту пирамиды. То, что это сечение пройдет через высоту противоположной грани (апофему), тоже доказать несложно, поскольку эта плоскость уже содержит 2 прямых, перпендикулярных ребру... Ну, и косинус двуграного угла равен расстоянию от центра треугольника до стороны, деленному на апофему. Ладно...