Воспользуемся формулой по теореме синусов, именно по такой формуле мы найдем сторону AB:
AC/sin∠B = AB/sin∠C
22,8 см/sin60° = AB/sin45°
AB = 22,8 см × sin45°/sin60° = 22,8 см × √2/2 / √3/2 = 11,4√2 см / √3/2 = 11,4√2 см × 2/√3 = 22,8√2/√3 см × √3/√3 = 22,8√2×3/(√3)² = 22,8√6/3 см ≈ 18,6√6 см = 19√6 см
Вообще-то есть формула для нахождения радиуса окружности, описанной около равностороннего треугольника.
R = V3/3 * a, где R - радиус описанной окружности, V - знак корня, а - сторона равностороннего треугольника
Но, если хочешь, можно и посчитать. Только чертеж сделай и смотри внимательно.
Дело в том, что в равностороннем треугольнике и высоты, и биссектрисы, и медианы пересекаются в одной точке. И эта точка является центром окружности, описанной около этого треугольника.
Проведи медиану (высоту, биссектрису) из любого угла. Т. е. раздели треугольник пополам. Получился прямоугольный треугольник (высоту ведь опустили) , у которого гипотенуза равна 6 см, а катет равен 3 см (половина, медиана ведь)
По теореме Пифагора находим второй катет . Получим 3V3 (три корня из трех)
А медианы в точке пересечения делятся на отрезки в отношении 2:1. Значит, та часть, которая является радиусом окружности -- это 2V3, а другая часть 1V3
а если бы подставила в формулу, получила бы такой же ответ R= V3/3 *6= 2V3
1) Уравнение плоскости, проходящей через точку перпендикулярно векторуДана точка и вектор . То есть и прямая и точка должны иметь соответствующие координаты. Уравнение плоскости, проходящей через данную точку перпендикулярно данному вектору: . . Раскрыв скобки и приведя подобные, получаем уравнение плоскости общего вида Ax + By + Cz + D = 0. Для построения плоскости её уравнение общего вида надо преобразовать в уравнение в отрезках. Значения (-D/A) = a, (-D/B) = b, (-D/C) = это и есть отрезки на осях, через которые проходит плоскость.
Дано:
ΔABC
AC = 22,8 см ∠B = 60° ∠C = 45°
Найти:
AB - ?
Воспользуемся формулой по теореме синусов, именно по такой формуле мы найдем сторону AB:
AC/sin∠B = AB/sin∠C
22,8 см/sin60° = AB/sin45°
AB = 22,8 см × sin45°/sin60° = 22,8 см × √2/2 / √3/2 = 11,4√2 см / √3/2 = 11,4√2 см × 2/√3 = 22,8√2/√3 см × √3/√3 = 22,8√2×3/(√3)² = 22,8√6/3 см ≈ 18,6√6 см = 19√6 см
ответ: AB = 19√6 см