Один з кутів паралелограма дорівнює 45°, його висота, яку проведено з вершини тупого кута, дорівнює 3 см і ділить протилежну сторону навпіл. знайдіть площу паралелограма.
Все ребра треугольной призмы равны. Найдите площадь основания призмы, если площадь ее полной поверхности равна 8+16√ 3
Полная площадь призмы равна сумме площадей двух оснований и площади боковой поверхности. Пусть ребро призмы равно а. Грани - квадраты, их 3. S бок=3а² S двух осн.=( 2 а²√3):4=( а²√3):2 По условию 3а²+(а²√3):2=8+16√3 Умножим обе стороны уравнения на 2 и вынесем а² за скобки: а²(6+√3)=16+32√3)=16(1+2√3) а²=16(1+2√3):(6+√3) Подставим значение а² в формулу площади правильного треугольника: S=[16*(1+2√3):(6+√3)]*√3:4 S=4(√3+6):(6+√3)=4 (ед. площади)
Думаю, решение понятно. Перенести решение на листок для Вас не составит труда.
Пусть параллельные прямые a и b пересечены секущей MN. Докажем, что накрест лежащие углы, например, 1 и 2 равны. Допустим, что углы 1 и 2 не равны. Отложим от луча MN угол PMN, равный углу 2, так, чтобы угол PMN и угол 2 были накрест лежащими углами при пересечении прямых МР и b секущей MN. По построению эти накрест лежащие углы равны, поэтому МР||b. Мы получили, что через точку М проходят две прямые (прямые a и МР) , параллельные прямой b. Но это противоречит аксиоме параллельных прямых. Значит, наше допущение неверно и угол 1 = углу 2.
Дивись малюнок і розв'язок на фото