1)угол АСВ=44 по теории о парал.прямых
смежный угол ЕDA, ЕDС = 78, а по Т. о смеж.углах известно, что
сумма смеж.углов равна 180⇒
АDС = 180 - 78 = 102
теперь нам известно 2 угла из треугольника АDС (сумма углов равна 180), то есть, 180 - 44 - 102 = 34.
угол АСD = 34
но тут, чтобы узнать угол АСВ нужно 180-102 - 34= 44(так мы нашли его)
2) теперь можно найти угол ВАС:
тут опять же смеж.углы, то есть, 180-44=136
а по условию известно что секущая делит угол КАС пополам, ⇒ 136:2=68
3)теперь в треугольнике АВС нам известно 2угла
1угол= 68
2угол = 44
а сумма всех углов в треугольнике равна 180
и так мы можем узнать угол АВС ⇒
180-68-44=68
угол АВС = 68
угол АСВ=44
угол ВАС=68
AB, AC і MN - дотичні, проведені до кола (B, C, K - точки дотику). Знайдіть периметр ΔAMN , якщо AB = 8 см.
Известная теорема: Если из какой-нибудь точки провести две касательные к окружности, то их отрезки от данной точки до точек касания равны между собой и центр окружности находится на биссектрисе угла, образованного этими касательными.
MK = MB
NK = NC
AC = AB
P (ΔAMN) =AM + MN + AN = AM +( MK + NK ) +AN =
AM +( MB + NC ) +AN = (AM + MB) + (AN + NC) = AB +AC = 2*AB
ответ: P (ΔAMN) = 2*AB = 2*8 cм = 16 см
В окружности с радиусом 25 расстояние до хорды длины 48 равна 7 (половина хорды, расстояние до хорды и радиус образуют прямоугольный треугольник, в данном случае Пифагоров 7,24,25). Поэтому высота равнобедренного треугольника, заданного в задаче, равна 7 + 25 = 32 (возможен вариант 25 - 7 = 18, то есть возможны два решения). Боковая сторона равна 40 (40^2 = 24^2 + 32^2, проверьте :)) это Пифагорова тройка, кратная 3,4,5), а расстояние до неё вычисляется уже упомянутым обозначим его d,
d^2 = 25^2 - (40/2)^2 = 15^2; d = 15 (и тут 3,4,5:)).
Во втором варианте высота 18, половина основания 24, поэтому боковая сторона 30 (опять 3,4,5!). Растояние до хорды длины 30 вычисляется так
d^2 = 25^2 - 15^2 = 20^2; d= 20. (и здесь 3,4,5, уже четвертый раз, а всего 5 раз встречается Пифагорова тройка :)))
Таким образом, в задаче есть два решения, 15 и 20.