делит на части длиной 6 и 12 см
нужны дополнительные построения
продливаем отрезок DM до пересечения со стороной параллелограмма ВС. Пусть точка пересечения будет Е. Тогда треугольники АМD и ВМЕ равны по второму признаку равенства теугольников (по стороне и прилежащим к ней углам - по условию сторона МВ равна МА,углы ЕМВ и DMA - вертикальные,а угол МDA равен углу MEВ как вертикальные углы при параллельных прямых ЕС и АД.Следовательно, сторона АD равна стороне ЕВ,а так как в параллелограмме противолежащие стороны равны,то получаем равенство АД=ВС=ЕВ )
Обозначим точку пересечения отрезков ДМ и АС как К. Тогда треугольники АКД и СКЕ - подобны по первому признаку подобия (по двум углам - углы АКД и СКЕ - вертикальные,а уголы АДК и КЕС - вертикальные ),следовательно,если треугольники подобны,то можем записать соотношение сторон:
АК/CK=AD/EC,так как ЕС =ЕВ+ВС,получим
АК/CK=AD/(ЕВ+ВС) (1)
Пусть сторона АД будет х, а отрезок АК будетт у,тогда запишем равенство АД=ВС=ЕВ=х,а КС =18-у (по условию задачи).
Теперь запишем уравнение (1) в таком виде
у /(18-у) = х/2х,так как х больше ноля (длина отрезка не может быть отрицательной),то правую часть уравнения можн сократить на х.
получаем
у /(18-у) = 1/2
у=6
АК=6, КС =18-у=18-6=12
В решение не уверен))) немного мудрёная задачка... скорей всего, я очень сильно намудрил с вписанными углами, сейчас просматривая записи и начинаю очень сильно сомневаться, что данный угол, именно таким можно найти)
угол АВС равняется 93 градусам, данный угол лежит на отрезке окружности АС, следовательно, АС = 93 * 2 = 186 ( т.к. угол АВС - вписанный, значит, он будет равняться половине дуги на которую он опирается)
Угол АДС так же лежит на отрезке окружности АС, значит, он будет как и угол АВС равен 93 градусам.
Угол АДС равен 186 : 2 = 93 градуса ( т.к. угол АДС - вписанный, значит, он будет равняться половине дуги на которую он опирается) ответ: 93 градуса
2)