Дана равнобедренная трапеция с острым углом 60 градусов и большим основным равным 24. Прямая проходящая через вершину острого угла и центр вписанной окружности делит трапецию на четырехугольник и треугольник. Найдите площадь полученного треугольника . Обозначим вершины трапеции АВСД. Углы равнобедренной трапеции, прилежащие к основанию, равны. Следовательно, угол ВАД=СДА=60° Продолжим боковые стороны до их пересечения и получим равносторонний треугольник. .Центр вписанной в треугольник окружности лежит на пересечении его высот (биссектрис) Прямая, проходящая через вершину острого угла и центр вписанной окружности, делит угол при основании трапеции пополам, т.к. является биссектрисой угла. Следовательно, треугольник АНД - половина правильного треугольника, и его площадь равна половине площади правильного треугольника со стороной 24. Площадь правильного треугольника находят по формуле S=(a²√3):4 S ⊿ АДН=¹/₂(24²√3):4= 576(√3):8=72√3 ----------------- Есть и другие решения, ответ будет тот же, но это решение - самое, на мой взгляд, короткое.
Объяснение:
180 ГРАДУСОВ-они равны