Боковые стороны в р/б равны , обозначим их за Х. х+х+96=196 2х=196-96 2х=100 х=100/2 х=50 теперь проведем высоту к основанию, она же будет медианой(делить основание пополам) , у нас должно получится 2 равных прямоугольных треугольника, рассмотрим один из них: боковая сторона р/б будет гипотенузой, а один из катетов равен половине основания р/б(катет1): катет1=96/2 катет1=48 найдем высоту р/б(или катет2) по т.пифагора: гипотенуза^2=катет1^2+катет2^2 катет2=корень из(гипотенуза^2-катет1^2) катет2=корень из(50^2-48^2) катет2=14 площадь=высота*основание/2 площадь=14*96/2 площадь=672
Чертёж смотрите во вложении.
Дано:
Четырёхугольник ABCD - ромб.
∠АВС - острый.
ВЕ и ВР - высоты, проведённые к сторонам ромба AD и CD соответственно.
∠ЕВР = 150°.
ВЕ = 6 см.
Найти:Р(ABCD) = ?
Решение:Рассмотрим четырёхугольник ВЕDP.
Сумма углов четырёхугольника равна 360°.
То есть -
∠Е+∠D+∠P+∠В = 360°
∠D = 360°-∠Е-∠Р-∠В
∠D = 360°-90°-90°-150°
∠D = 30°.
Рассмотрим соответственные ∠EAB и ∠D при АВ║CD (параллельны по определению ромба) и секущей ED.
∠EAB = ∠D = 30° (по свойству соответственных углов при параллельных прямых и секущей).
Рассмотрим прямоугольный ΔЕВА.
Против угла в 30° лежит катет, равный половине гипотенузы.
То есть -
У ромба равны все стороны.
Следовательно -
Р(ABCD) = 4*АВ = 4*12 см = 48 см.
ответ: 48 см.