* * * * * * * * * * * * * * * * * * * * * * * * * *
В равнобедренной трапеции диагональ является биссектрисой. Найдите площадь трапеции, если боковая сторона - 25 см, основание 39 см
ответ: 768 см².
Объяснение: Пусть ABCD равнобедренная трапеция
AD и BC основания трапеции ( AD || BC ) AD =39 см ,
ВA = CD =25 см и ∠ BAC = ∠ DAC .
S(ABCD) = h*(AD+BC)/2 -?
--------------------------------------
∠ BCA= ∠ DAC как накрест лежащие углы ( BC || AD , CA секущая) ,
следовательно ∠ BCA= ∠ DAC =∠ BAC , т.е. ΔBAC равнобедренный
BA = BC =25 см получили BA = CD =25 см .
Проведем BB₁ ⊥ AD и CC₁ ⊥ AD . BCC₁B₁ _прямоугольник BB₁ =CC₁
B₁C₁ = BC =25 см ; Δ BB₁A = Δ CC₁D(гипотен. BA= CD и катеты BB₁ =CC₁).
AB₁ =(AD - BC)/2 =(39 - 25)/2 см=7 см .
Из Δ BB₁A по теореме Пифагора:
BB₁ =√(BA² -AB₁² ) =√(25² -7)² =√(625 -49) =√576=24 (см) .
* * * h=√(25²-7)² =√(25 -7)(25 +7) =√(18*32) √(9*2*16*2)=3*2*4=24 * * *
S(ABCD) = h*(AD+BC)/2 =24(39+25)/2 =24*32 = 768 (см²).
у = кх + в - уравнение прямой
Подставим координаты точки А(3; 5)
5 = к · 3 + в (1)
Подставим координаты точки В(-2; 1)
1 = к · (-2) + в (2)
Из уравнения (1) вычтем уравнение (2)
4 = 5к → к = 4/5 = 0,8
Из 1-го уравнения найдём в = 5 - 3к = 5 - 3 · 0,8 = 2,6
Таким образом, искомое уравнение имеет вид
у = 0,8х + 2,6
Можно это уравнение также записать в виде 5у = 4х + 13
или в виде 5у - 4х - 13 = 0 - это уж зависит от того, какие у вашего учителя требования. Но все они - уравнение одной и той же прямой
ответ: у = 0,8х + 2,6 или 5у = 4х + 13 или 5у - 4х - 13 = 0
Відповідь 4,8.
Розв'язання завдання додаю