1. Дано: угол 2 = угол 1 + 34°; Найти: угол 3. Решение: Угол 3 и угол 1 - соотвественные углы при параллельных прямых a и b и секущей c. Следовательно, угол 3 = углу 1. Углы 1 и 2 - односторонние при параллельных прямых a и b и секущей c⇒ угол 1 + угол 2 = 180°. Но, по условию, угол 2 = угол 1 + 34°. Подставим это выражение: угол 1 + угол 1 + 34° = 180°. Отсюда угол 1 = 73°. Значит, угол 3 = 73°. ответ: 73°.
2. Дано: ΔАВС, угол С = 90°, CD || AB, угол DCB = 37°. Найти: угол А, угол В. Рисунок к задаче - в приложении к ответу. Решение: Угол DCB и угол B - накрест лежащие углы при параллельных прямых AB и DC и секущей BC ⇒ угол DCB = углу B. Т.к. угол DCB = 37°, то угол B = 37°. Угол A + угол В + угол ACB = 180° (по теореме о сумме углов треугольника), следовательно, угол A = 180° - угол В - угол ACB. Угол А = 180° - 90° - 37° = 53°. ответ: угол А = 53°, угол В = 37°.
Ромб диагональю АМ делится на два равносторонних треугольника со стороной 2 см. Так как сторона АВ у ромба и треугольника общая, то в равностороннем треугольнике АВС стороны равны АС=СВ=АВ=2 см. Треугольники АВС и АВМ равны. Их высоты также равны и пересекаются в точке Н. Т.к. плоскость треугольника АВС перпендикулярна плоскости ромба, СН⊥МН, и треугольник СНМ - прямоугольный с равными катетами СН=МН СН=СВ*sin(60°) СН=МН=2(*√3):2=√3 СМ можно найти по т. Пифагора или по формуле гипотенузы равнобедренного прямоугольного треугольника с=a√2 СМ=√3 *(√2)=√6