Диагонали ромба в точке пересечения делятся пополам и образуют 4 равных прямоугольных треугольника(половинки диагоналей это катеты, а сторона ромба гипотенуза) , пусть a,b катеты, с гипотенуза Сумма катетов : Также вспомним теорему Пифагора: Объединим оба уравнения в систему: Выразим из второго уравнения а (подстановка) Подставим в первое уравнение Это приведенное уравнение, решаем по т.Виета Подставляем оба найденных корня в подстановку Как мы видим ответом систем являются пары чисел (15;20) и (20;15) ,не имеет значения в каком порядке расположены числа, мы нашли половины диагоналей. Площадь ромба можно найти по формуле:
Значит так. Чертим прямоугольный треугольник. Решение: Рассмотрим треугольник ACH: Так как CH - высота,то этот треугольник прямоугольный. Следовательно CH - катет и мы находим его по теореме Пифагора: CH = √6^²-4^² = √36-16 = √20 = 2√5 Я предлагаю рассмотреть треугольник ABC и найти x через CB(не знаю можно ли так,как я решил,но я запишу) AB=4+x CB=√AB²-AC² = √(4-x)²-6² = √x²-10x-20 Разбираем квадратичное уравнение: x²-10x-20=0 D= 100+4*20=180 √D= 6√5 x_{12} = 5+-3√5 x2 - не подходит,так как получается отрицательным,поэтому BH = 5+3√5. ответ: 5+3√5
Сумма катетов :
Также вспомним теорему Пифагора:
Объединим оба уравнения в систему:
Выразим из второго уравнения а (подстановка)
Подставим в первое уравнение
Это приведенное уравнение, решаем по т.Виета
Подставляем оба найденных корня в подстановку
Как мы видим ответом систем являются пары чисел (15;20) и (20;15) ,не имеет значения в каком порядке расположены числа, мы нашли половины диагоналей.
Площадь ромба можно найти по формуле: