У задачи решения. если АВ перпендикулярна плоскости) В этом случае необходимо найти АМ: АМ:МВ = 2:3, АВ = АМ + МВ=> 2х + 3х = 12,5 5х = 12,5 х = 2,5 АМ = 2х = 2 * 2,5 = 5 (м) если АВ является наклонной к плоскости)Необходимо найти расстояние от точки М до плоскости (длину отрезка МD).Потребуются дополнительные построения: точка С, лежащая в плоскости; ВС - перпендикуляр к плоскости; АС - проекция наклонной АВ.Треугольники АВС и АDМ подобны по первому признаку.=> AM/AB = MD/BC, АВ = АМ + ВМMD = (12,5 * 2) / 5 = 5 (м)
По теореме косинусов:
АВ²=АС²+ВС²-2АС*ВС*cos C=AC²+50²-2*AC*50*0,6=AC²+2500-60AC.
3364=AC²+2500-60AC;
AC²-60AC-864=0.
D=3600+3456=7056=84².
Третья сторона AC=(60+84)/2=72.
Также по теореме косинусов найдем
ВС²=АВ²+АС²-2АВ*АС*соs A=58²+72²-2*58*72*cos A=3364+5184-8352*cos A=8548-8352cos A,
отсюда cos A= (8548-2500)/8352=6048/8352=21/29=0,724.
Aналогично АС²=АВ²+ВС²-2АВ*ВС*соs B=58²+50²-2*58*50*cos B=3364+2500-5800*cos B=5864-5800*cos B,
отсюда соs B=(5864-5184)/5800=680/5800=17/145=0,117.
ответ: 72 см, соs B=0,117, cos A=0,724.