М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
pomoshvdorogep0arzo
pomoshvdorogep0arzo
28.01.2020 22:34 •  Геометрия

&(_) 3) 2) 2) #9#) 2₽((_'(мдадащмщмзажужызыхых

👇
Открыть все ответы
Ответ:
Saxarok2018
Saxarok2018
28.01.2020

Внизу

Объяснение:

Подобны, Если пирамида пересечена плоскостью, параллельной основанию, то:

1) боковые ребра и высота разделены на пропорциональные части;

2) многоугольник сечения подобен основанию;

3) площади основания и сечения относятся, как квадраты их расстояний от вершины.

Доказательство:

1) Так как \beta\||\alpha и они пересечены плоскостью грани ASB по прямым A_{1}B_{1} и AB , то A_{1}B_{1}||AB. Аналогично получим, что B_{1}C_{1}||BC, C_{1}D_{1}||CD и т. д. и B_{1}H_{1}||BH. На сторонах углов ASB, BSC, CSD, ... , BSH получим пропорциональные отрезки:

\frac{SA_{1}}{A_{1}A} = \frac{SB_{1}}{B_{1}B}; \frac{SB_{1}}{B_{1}B} = \frac{SC_{1}}{C_{1}C}; \frac{SC_{1}}{C_{1}C} = \frac{SD_{1}}{D_{1}D}; \ldots  ; \frac{SB_{1}}{B_{1}B} = \frac{SH_{1}}{H_{1}H}.

Отсюда:

\frac{SA_{1}}{A_{1}A} = \frac{SB_{1}}{B_{1}B} = \frac{SC_{1}}{C_{1}C} = \frac{SD_{1}}{D_{1}D} =\ldots= \frac{SH_{1}}{H_{1}H}.

2) \triangle{A_{1}SB_{1}}\sim\triangle{ASB}; \triangle{B_{1}SC_{1}}\sim\triangle{BSC}; \triangle{C_{1}SD_{1}}\sim\triangle{CSD}

и т.д. Значит

\frac{A_{1}B_{1}}{AB} = \frac{SA_{1}}{SA}; \frac{B_{1}C_{1}}{BC} = \frac{SB_{1}}{SB}; \frac{C_{1}D_{1}}{CD} = \frac{SC_{1}}{SC} и т.д.

Но правые отношения в этих пропорциях равны между собой на основании только что доказанной первой теоремы, поэтому равны между собой и левые отношения:

\frac{A_{1}B_{1}}{AB} = \frac{B_{1}C_{1}}{BC} = \frac{C_{1}D_{1}}{CD} и т.д.

Т. е. стороны многоугольников A_{1}B_{1}C_{1}D_{1}E_{1} и ABCDE пропорциональны. Соответствующие углы этих многоугольников равны. Следовательно, A_{1}B_{1}C_{1}D_{1}E_{1} \sim ABCDE.

3) Пусть Q и Q' — площади основания и сечения. Имеем:

\frac{Q}{Q'} = \frac{A_{1}B_{1}^2}{AB^2};

Но \frac{A_{1}B_{1}}{AB} = \frac{SA_{1}}{SA} = \frac{SH_{1}}{SH} (по теореме 1), поэтому

\frac{Q}{Q'} = \frac{SH_{1}^2}{SH^2}.

4,8(59 оценок)
Ответ:
vyaskin2018
vyaskin2018
28.01.2020

Обозначим наклонные L1=18   ; L2 = 2√109.

Проекции  l1 = 3x  ;  l2= 4x

Пусть проекция точки А на плоскость – точка А1

АА1 – перпендикуляр к  плоскости.

Между проекций и перпендикуляром прямой угол.

Наклонная, проекция и перпендикуляр  образуют прямоугольный треугольник.

Наклонная – ГИПОТЕНУЗА

Проекция и перпендикуляр  - КАТЕТЫ

Имеем два прямоугольных  треугольника, с общей стороной – АА1.

По теореме Пифагора

АА1^2= L1^2-l1^2=18^2-(3x)^2  - для первого  треугольника

АА1^2= L2^2-l2^2=(2√109)^2-(4x)^2    - для первого  треугольника

Приравняем правые части

18^2-(3x)^2  = (2√109)^2-(4x)^2   

324-9x^2  = 436-16x^2   

7x^2= 112

X^2=16

X= 4

Тогда проекция  l1=3x=3*4=12

АА1^2= 18^2-12^2  =180

AA1 =6 √5

ответ   6 √5

4,6(58 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ