АВ=ВС, т.к. треугольник равнобедренный, а АС - основание. ВК=2, АК=8, тогда, АВ=10. Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов. АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16. В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6. Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.
ВВ1 - биссектриса угла АВD, т.к. АВ1 = В1D , то по признаку равнобедренного треугольника если медиана и биссектриса, выходящие из одной вершины , совпадают, то этот треугольник равнобедренный => треугольник АВD равнобедренный, тогда АВ = ВD => треугольник ABD - равносторонний! Т.к. АВ = ВD = АD (АВ = АD т.к. АВСD - ромб) => Все углы в равностороннем треугольнике равны по 60 градусов.
В ромбе треугольник АВD = треугольнику ВDС , по 3-ему признаку равенства треугольников (по трем сторонам) (т.к. ВD - общая сторона, АВ = АD = DC = ВС) Отсюда:
Угол А = Углу С = 60 градусов.
АС и BD - диагонали ромба, они же являются и биссектрисами соответствующих углов! Отсюда Угол B = угол ABD + угол DBC = 2 угла ABD = 2 * 60 = 120
Решение
1) Рассмотрим треуг. ABC и треуг. MNP: AB=PM ,BC=MN,AC=NP
Значит, треуг. ABC равен треуг. MNP - по третьему признаку равенства треугольников (по 3-ем сторонам).
2) Из равенства треугольников следует равенство соответственных элементов, значит угол В равен углу М и равен 59 градусов.
ответ: Угол В = 59 градусов