АВСD-квадрат, діагональ якого дорівнює 5см.З точки В проведено перпендикуляр ВМ до площини квадрата. Знайдіть відстань від точки М до площини квадрата, якщо Мдо вершини D дорівнює 13 см. А) 13см Б) 15см В) 10см Г) 18см
1) Строим данный угол и проводим биссектрису. От вершины биссектрисы откладываем диагональ АВ и делим ее пополам, точкой О. Проводим перпендикуляр через точку О к диагонали АВ, который пересекает стороны угла в точках С и D, которые являются вершинами искомого ромба. 2) Пусть дан угол а и диагональ d. Необходимо построить ромб, в котором один из углов равен а, а противолежащая диагональ равна d. Предположим, что существует ромб ABCD, в котором диагональ Диагональ АС — биссектриса Проведем через точку A прямую и отложим отрезки по разные стороны от точки А, следовательно, прямоугольник. Построим Проведем биссектрису AC угла BAD. Через точку А проведем прямую и от точки А отложим Проведем через прямые, параллельные АС, точки пересечения этих прямых со сторонами угла BAD обозначим соответственно В и D. Раствором циркуля, равным АВ, проведем дугу с центром В, при этом, точку пересечения дуги с прямой а обозначим С. Получим четырехугольник ABCD. Докажем, что ABCD — ромб в котором — по построению. Так как прямоугольник по построению, то отрезок АО — серединный перпендикуляр к BD и равнобедренный ОС серединный перпендикуляр в значит, — равнобедренный Так как по построению, то и ромб с По построению значит, искомый ромб.
Раз периметр ромба равен 16 см, то каждая его сторона равна 16:4=4 см. Точкой пересечения диагоналей получаем прямоугольный треугольник, в котором гипотенузой является сторона ромба, равная 4 см, а также катет, равный половине данной длины нашей диагонали, т.е. один из катетов равен 3√4:2=6:2=3. По теореме Пифагора находим второй катет: 4^2-3^2=7. Второй катет равен √7. Тут по таблице Брадиса я только примерно могу назвать градусную меру углов. Возьмём синус угла, напротив которого лежит половина нашей диагонали. Он будет равен 3:4=0,75. Градусная мера угла(примерно!) равна 49 градусов. Тогда градусная мера другого угла примерно будет равна 180-90-49=41 градус. Т.к. проведённые диагонали ромба являются и биссектрисами его углов, то градусная мера двух углов будет равна 98-ми градусам(лежащим напротив друг друга), а градусная мера других двух углов будет равна 82 градусам. Чтобы удостовериться, что данные расчёты в теории правильны, сложим эти углы(должно получиться 360 градусов)=82^2+98^2=360. ответ:Градусная мера острых углов ромба равна 82-ум градусам, а тупых 98-ми.