Обозначим высоту пирамиды Н, высоту боковой грани h, сторону основания а (в основании квадрат).
площадь основания = площадь полной поверхности - пощадь боковой поверхности = 96 см^2 - 80 см^2 =16 см^2
Т.к. в основании квадрат, площадь основания = а^2 =16 см^2
а=4
Площадь поверхности одной боковой грани = а*h/2 =80/4 =20 cм^2
Высота боковой грани h = 20*2/4=10 см
Рассмотрим треугольник, образованный высотой пирмиды, высотой боковой грани и отрезком (обозначим его длину с), соединяющим точки их пересечения с основанием, равным полвине стороны основания. Это прямоугольный треугольник, т.е. h^2 = c^2 + H^2
c=a/2 = 2 см
H = корень квадратный (h^2 - c^2) = корень квадратный (96)=4 корня квадратных из 6
1)
В равнобедренном треугольнике боковые стороны равны, также как и углы при основании, зная, что сумма углов в треугольнике равна 180 градусов, составим и решим уравнение:
2x=180-52
2x=128
x=64 - угол при основании
ответ: углы при основании равны 64 градуса
2) Найти градусную меру угла DCE, зная, что FEC=105 градусов. Зная, что сумма соответсвенных углов равна 180*, найдем DCE:
DCE=180-105=75
ответ: DCE=75*
3) Для начал найдем угл ADE
ADE=180-(28+10)=180-38=142
DCB=180-142=38*
Cумма углов в треугольнике равна 180, значит угол
C=180-(72+38)=70*
ответ: C=70*
Больше 3 не решу, так как правила знаний запрещает выкладывать более 3 вопросов
ответ на фото) Удачки тебе))