Основания трапеции параллельны.
Её диагонали - секущие.
Накрестлежащие углы при их пересечении с основаниями равны. Треугольники, которые образуются при пересечении диагоналей, подобны по 3-м углам.
Коэффициент подобия этих треугольников равен отношению оснований трапеции.
k=4/8=1/2
Отношение длин соответствующих элементов подобных треугольников равно коэффициенту подобия.
Точка пересечения диагоналей делит высоту трапеции на части, являющиеся высотами треугольников.
Обозначим высоту меньшего треугольника h, высоту большего - Н.
Тогда h/H=1/2.
Высота трапеции содержит 1+2 =3 части.
Каждая часть=9:3=3 см
Поэтому h=3 см
Н=2•3=6 см.
Расстояния от точки пересечения диагоналей до оснований трапеции равны 3 см и 6 см.
*****************
Задача 2.
Наложим данные треугольники друг на друга так, чтобы стороны их равных углов совпали. Пусть общая вершина будет В, а сами треугольники – АВС и КВМ.
Так как оба треугольника равнобедренные и имеют равные углы при вершине, их углы при основаниях КМ и АС тоже равны ( свойство).
∆ КВМ~∆ АВС. k= ВС/ ВМ=15:5=3
Высота равнобедренного треугольника, проведенная к основанию, делит его пополам.
КО=ОМ, и АН=НС.
КО=3 ( ∆ КВО - египетский, проверьте по т.Пифагора.)
Отношение длин соответствующих элементов подобных треугольников равно коэффициенту подобия.
АН:КО=3.
АН=3•3=9
АС=9•2=18 см
Р ∆ АВС=2•ВС+АС=30+18=48 см
Объём цилиндра равен 432π cм³ ≈ 1357 см³
Объяснение:
Прямоугольный треугольник (основание призмы) вписан в основание цилиндра так, что гипотенуза этого треугольника равна диаметру цилиндра D.
Поскольку катет, прилегающий к углу 60º равен 6 см, то гипотенуза
D = 6 : cos 60° = 6 : 0.5 = 12 (см)
Большая грань призмы - прямоугольник со сторонами, равными D и H (Н - высота призмы и одновременно высота цилиндра)
Так как диагональ большей боковой грани призмы составляет с плоскостью её основания угол в 45º, то треугольник, образованный диагональю большей боковой гранью призмы , диаметром цилиндра и высотой цилиндра, является прямоугольным равнобедренным треугольником, то есть высота цилиндра равна его диаметру
Н = D = 12 cм.
Объём цилиндра равен
V = 0.25πD² · H = 0.25π · 12² · 12 = 432π (cм³) ≈ 1357 см³