Последняя осталась из 30 ) в основании призмы лежит правильный треугольник со стороной 8 см а ее боковые грани прямоугольники.высота призмы 12 см.найти полную поверхность и боковую поверхность.
Полная поверхность призмы - сумма двух ее оснований и площадь боковой поврехности, которая, в свою очередь, является суммой трех граней призмы.
Площадь оснований - это площадь 2-х правильных треугольников, которая находится по формуле Sосн=(а²√3):4, а так как оснований 2, умноженная на 2 2*Sосн=2( 64√3):4=32√3 см² Площадь боковой поверхности - площадь периметра основания на высоту призмы Sбок=8*3*12=288 см² Полная площадь Sполн=288 +32√3 = 32(9+√3)см²
Расстоянием от точки до прямой называется длина кратчайшего перпендикуляра. таким образом, необходимо опустить перпендикуляр из точки с на прямую sa. для этого достроим равнобедренный треугольник sca и перпендикуляр сk, при чем k лежит на самой стороне sa, так как угол sca острый. обозначим ck за х. тогда по т. пифагора: х^2+sk^2=sc^2 x^2+ak^2=ac^2. отсюда приравняем: sc^2-sk^2=ac^2-ak^2. 4-sk^2=sqrt2(диагональ через 1 вершину в правильном шестиугольнике в sqrt2 раза больше стороны, т.е. ac=ab*sqrt2=-sk)^2. 4-sk^2=sqrt2-(4-4sk+sk^2). 4-sk^2=sqrt2-4+4sk-sk^2. 4=sqrt2-4+4sk. 4sk=8-sqrt2. sk=2-(sqrt2)/4. kc^2=sc^2-sk^2=4-(4-sqrt2+1/8)=sqrt2-1/8. kc=sqrt(sqrt2-1/8).
В данной пирамиде в основании лежит правильный шестиугольник. В нём АВ║СF, значит угол между СО и плоскостью SBC такой же, как и между стороной АВ и той же плоскостью. SM - апофема грани SBC, OK⊥SM, SM∈SBC, значит СК⊥ОК. Тр-ник СКО прямоугольный, значит ∠КСО - угол между СО и плоскостью SBC. Тр-ник ВОС равносторонний. СО=ВС=1. ОМ - высота правильного тр-ка. ОМ=а√3/2=ВС√3/2=√3/2. В тр-ке SMB BM=BC/2=0.5. SM=√(SB²-BM²)=√(4-0.25)=√3.75. В тр-ке SMO cosM=OM/SM=√3/(2√3.75). sin²M=1-cos²M=1-3/15=12/15. В тр-ке ОКМ ОК=ОМ·sinM=√3·√12/(2√15)=3/√15=√15/5. В тр-ке СКО sin(КСО)=КО/СО=√15/5. ∠КСО=arcsin√15/5≈50.8° - это ответ.
Полная поверхность призмы - сумма двух ее оснований и площадь боковой поврехности, которая, в свою очередь, является суммой трех граней призмы.
Площадь оснований - это площадь 2-х правильных треугольников, которая находится по формуле
Sосн=(а²√3):4, а так как оснований 2, умноженная на 2
2*Sосн=2( 64√3):4=32√3 см²
Площадь боковой поверхности - площадь периметра основания на высоту призмы
Sбок=8*3*12=288 см²
Полная площадь
Sполн=288 +32√3 = 32(9+√3)см²