Одна из формул площади параллелограмма Ѕ=a•h. Очевидно, что при одинаковой площади большей будет высота, проведенная к меньшей стороне, и наоборот. Следовательно, искомой будет высота к стороне АВ ( или равной ей CD).
На рисунке в приложении высота к меньшей стороне АВ пересекается с ее продолжением. Из прямоугольного треугольника AKD высота DK=AD•sinA=6•1/3=2 (ед. длины)
Как вариант можно найти большую высоту иначе. Сначала найти длину меньшей высоты ВН=АВ•sinA, затем найти площадь S=ВН•AD и высоту DK=S:AB.
По свойству касательных к окружности, проведенных из одной точки, отрезки касательных равны. см. рисунок в приложении Поэтому a+b-с=2r r=(a+b-c)/2 ПОЛЕЗНАЯ ФОРМУЛА так как гипотенуза прямоугольного треугольника является диаметром описанной окружности, прямой угол опирается на диаметр, то c=2R - диаметр окружности, описанной около прямоугольного треугольника
2=(a+b-10)/2 ⇒ a+b=14
По теореме Пифагора a²+b²=10²
Решаем систему уравнений b=14-a a²+(14-a)²=10² 2a²-28a+96=0 a²-14a+48=0 a=6 или a=8 b=8 b=6
Одна из формул площади параллелограмма Ѕ=a•h. Очевидно, что при одинаковой площади большей будет высота, проведенная к меньшей стороне, и наоборот. Следовательно, искомой будет высота к стороне АВ ( или равной ей CD).
На рисунке в приложении высота к меньшей стороне АВ пересекается с ее продолжением. Из прямоугольного треугольника AKD высота DK=AD•sinA=6•1/3=2 (ед. длины)
Как вариант можно найти большую высоту иначе. Сначала найти длину меньшей высоты ВН=АВ•sinA, затем найти площадь S=ВН•AD и высоту DK=S:AB.