Объяснение:
1) Рассмотрим треугольники EFD и CFD:
EF=CF, <EFD= <CFD - по условию, DF - общая.
Следовательно треугольники равны по двум сторонам и углу между ними ( І признак равенства треугольников).
Из равенства треугольников следует равенство сторон и углов: DE=DC, <EDK=<CDK.
2) Рассмотрим треугольники EDK и CDK:
DE=DC, <EDK=<CDK - доказано в п.1, DK - общая.
Треугольник EDK = треугольнику CDK по двум сторонам и углу между ними ( І признак равенства треугольников).
Из равенства треугольников следует равенство углов: <DEK=<DCK, что и требовалось доказать.
Шесты АВ и ДС как основания образуют прямоугольную трапецию АВСД, а пересечение канатов ВД и СА есть не что иное, как пересечение диагоналей прямоугольной трапеции.
Как известно, отрезок, параллельный основаниям и проходящий через пересечение диагоналей прямоугольной трапеции делится точкой пересечения пополам, и если АВ=х, ДС=у, то длина его равна 2·х·у/(х + у).
Исходя из этого: ОК=2·х·у/(х + у)÷2=х·у/(х + у)
1) ОК=(х·у)÷(х + у)
Как видно, длина ОК никаким образом не зависит от расстояний между шестами, а лишь от их высоты.
2) Если AB=х=2 м, а DC=у=8 м, то ОК=(2·8)÷(2+8)=1,6 м
ответ: длина шеста ОК=1,6 м