205/5=41 большая сторона
Окружность, проходящая через все три вершины треугольника, называется его описанной окружностью. Центр описанной окружности лежит на пересечении серединных перпендикуляров к сторонам треугольника. Центр описанной около остроугольного треугольника окружности лежит внутри треугольника.Описанная окру́жность многоугольника — окружность, содержащая все вершины многоугольника. Центром является точка (принято обозначать {\displaystyle O}O) пересечения серединных перпендикуляров к сторонам многоугольника.Если все стороны треугольника касаются окружности, то окружность называется вписанной в треугольник, а треугольник - описанным около этой окружности.
Теорема. В любой треугольник можно вписать окружность и при этом только одну.
Центр вписанной в треугольник окружности находится в точке пересечения его биссектрис
Объяснение:
Опустим из вершин меньшего (верхнего) основания перпендикуляры (по факту высоты) на большее основание. Они будут равны диаметру вписанной окружности D=2r=2*4=8. Тогда они образуют с боковыми сторонами прямоугольные треугольники. Тогда катеты обоих этих треугольников, лежащие на основании (т. е. проекции боковых сторон на основание) по теореме Пифагора будут равны √(x²-64). Тогда меньшее основание будет равно 16-2* √(x²-64). Зная, что по свойству описанного четырехугольника, суммы противоположных сторон данной трапеции равны, составим и решим уравнение:
2x=16+(16-2* √(x²-64))
2x=32-2* √(x²-64) сократим на 2
x=16-√(x²-64)
√(x²-64)=16-x возведем обе части в квадрат и получим
x²-64=256-32x+x² x² взаимно сокращаются
-64=256-32x
32x=256+62=320
x=320/32=10 - длина боковой стороны
Тогда все по тому же свойству сумма оснований равна сумме боковых сторн, т. е. 10+10=20. Длина же средней линии будет равна половине суммы оснований (по теореме о средней линии), т. е. 20/2=10
ответ: 10
S=a*h(a) ⇒ a=S/h(a)
S=b*h(b) ⇒ b=S/h(b)
S=205, h(a)=5, h(b)=17
a=205/5=41
b=205/17≈12.06
можно было вторую сторону не искать так как к большей стороне меньшая высота.