В прямоугольном треугольнике катет, лежащий против угла 30 градусов = 1/2 гипотенузы. Доказательство. Дано тр. АВС. Угол С- прямой Доказать: СВ = 1/2 АВ 1)Угол В = 180 - 90 - 30 = 60 гр.(по теореме о сумме углов треуг. 2) Проведём из вершины угла С медиану СF, которая равна по определению медиана, проведённая к гипотенузе равна половине гипотенузы, то треугольники CAF и CBF- равнобедренные. По доказанному CF=AF=BF Следовательно, у треуг. CFB углы при основании равны:∠B=∠BCF=60º.Так как сумма углов треугольника равна 180º, то в треугольнике BFC∠BFC =180º -(∠B+∠BCF)=60º.Поскольку все углы треугольника BFC равны, то этот треугольник — равносторонний.Значит, все его стороны равны и
Пусть угол А - х, тогда угол B - тоже х, а угол Bad = x/2 рассмотрим треугольник АДБ - угол Б равен 180 градусов -( 110 градусов + x/2) рассмотрим треугольник АБС угол Б равен 180 - 2х потом вычитаем из первого уравнения второе, в правой части у нас ноль (углы Б сократились) в левой части 2x-110-x/2 иксы в правую часть градусы в левую часть переносим итого у нас получается 1,5х=110 градусов x=углу А= углу С= 73 и 1/3 градусов (в ответе переведи в десятичные 73,33) Угол б равен 180 градусов минус 2х = 33 и 1/3 градуса (33.33)
гипотенузы.
Доказательство.
Дано тр. АВС. Угол С- прямой
Доказать: СВ = 1/2 АВ
1)Угол В = 180 - 90 - 30 = 60 гр.(по теореме о сумме углов треуг.
2) Проведём из вершины угла С медиану СF, которая равна по определению медиана, проведённая к гипотенузе равна половине гипотенузы, то треугольники CAF и CBF- равнобедренные. По доказанному CF=AF=BF
Следовательно, у треуг. CFB углы при основании равны:∠B=∠BCF=60º.Так как сумма углов треугольника равна 180º, то в треугольнике BFC∠BFC =180º -(∠B+∠BCF)=60º.Поскольку все углы треугольника BFC равны, то этот треугольник — равносторонний.Значит, все его стороны равны и