Первое немогу решить, так как давно это было,не могу вспомнить всех формул.
Решение задачи №2:
а) Найдем гипотенузу BD треугольника BCD:
BD=корень из (BC^2+CD^2)= корень из(5^2 + 5^2)= корень из 50
Назовем проекцию диагонали BD1, она является катетом прямоугольного треугольника BDD1. Найдем ее:
BD1=кореньиз(BD^2-DD1^2)=кореньиз((корень из 50)^2-1^2)=кореньиз49=7
ответ: проекция диагонали BD на плоскость равна 7 см.
б)я не знаю, но по моему они могут быть и не перпендикулярны.
если только не имеется в виду плоскость в которой лежит CDD1, тогда да, т.к. ВС перпендикулярен СDD1
Высота правильной четырёхугольной пирамиды равна 12 см, а сторона основания равна 24 см. Вычисли двугранный угол при основании.
——————————————————
Основание правильной четырехугольной пирамиды – квадрат.
Все боковые грани правильной пирамиды образуют с плоскостью основания равные углы, а высота проходит через центр основания, который является центром вписанной и описанной около основания окружностей.
Двугранный угол здесь образован радиусом вписанной окружности и апофемой, как отрезками. перпендикулярными ребру основания в одной точке (по т. о трех перпендикулярах).
Радиус вписанной в квадрат окружности равен половине его стороны.
r=24:2=12 (см)
Соединив основание апофемы с центром основания ( основанием высоты пирамиды), получим прямоугольный треугольник.
При этом катеты- высота пирамиды и половина стороны основания - равны 12 см.
Следовательно, треугольник - равнобедренный. Острые углы равнобедренного прямоугольного треугольника равны 45º.⇒ Искомый угол равен 45º.
Здесь отпечатка ас не может=2.