1)Б 2)А 3)В 4)А
Объяснение:
1)Если угол при основании равен 48°, то угол при вершине равен 180°-48°*2=84°. Все углы меньше 90° => треугольник остроугольный.
2) Если два угла равны 25° и 65°, то третий угол равен 180°-25°-65°=90°. Один угол прямой => треугольник прямоугольный.
3) Если сумма двух углов равна 85°, то третий угол равен 180°-85°=95°. Один угол тупой => треугольник тупоугольный.
4) В треугольнике одна сторона в два раза больше двух других => противолежащий этой стороне угол в два раза больше двух других => этот угол прямой => треугольник прямоугольный.
ΔАСВ - равнобедренный, АС = ВС (по условию); ∠С = 90°; СН - высота.
Найти СН
Решение:
Если прямоугольный треугольник является равнобедренным, то оба его катета равны (АС = ВС) А высота СН, проведённая из прямого угла, является и медианой и биссектрисой,
⇒ СН разделит АВ пополам, т. е. АН = НВ = 5см - (свойство медианы)
⇒ ∠АСН = ∠НСВ = 45° - (свойство биссектрисы)
Рассмотрим Δ АНС: ∠АНС = 90° (т.к. НС - высота);
∠АСН = 45°
∠НАС = 180 - 90 - 45 = 45° (сумма ∠∠∠ Δ=180°)
⇒ Δ АНС - равнобедренный (∠АСН = ∠НАС = 45°)
⇒ НС = НА = 5 см
ответ: НС = 5см