Решение: Объём воды в сосуде находится по формуле: V=Sосн.*h- где S - площадь основания; h- уровень воды Из первой формулы h=V : Sосн. S=πR² или: h=V/ πR² Если перелить воду в другой сосуд у которого радиус меньше в 2 раза (R/2) уровень воды равен: h=V : π*(R/2)²=V : π* R²/4=4V/ πR² Вычислим во сколько раз увеличится уровень воды при переливании воды в другой сосуд: 4V/ πR² : V/πR²=4V* πR²/πR²*V=4 (раза) Отсюда уровень воды, равный 15см в другом сосуде увеличится в 4 раза, следовательно в другом сосуде он будет: 15см*4=60см
Дано: Окружность описана около трапеции; Р тр = 108 см; ср.линия тр. = 27 см Найти: боковые стороны трапеции. Решение: 1) Периметр трапеции складывается из суммы оснований и боковых сторон. 2) Ср. линия трапеции равна полусумме оснований. Значит, сумма оснований равна двум средним линиям, тогда: 27 * 2 =54 (см) сумма оснований трапеции. 3) 108 - 54 = 54 (см) сумма боковых сторон трапеции. 4) Если около трапеции описали окружность, то эта трапеция равнобедренная, т.е. имеет равные стороны. 54 : 2 =27 (см) каждая боковая сторона ответ: 27 см длина каждой из боковых сторон.