Пусть ABCD некий прямоугольник, где противолежащие стороны и углы равны, тогда AB=CD и AC=BD, по условию нам известно что некая сторона теугольника равна 40 см, тогда AB=CD= 40 см. Мы знаем что при проведение диагоналей СB и DA прямоугольник делятся на два равных по 1-ому признаку равнобедренных прямоугольных прямоугольника. По теореме Пифагора мы сможем найти сторону AB:
A2 + B2= C2 (квадрат гипотенузы равен сумме квадратов катетов)
402+ B2= 412
1600+ B2=1681
B2=1681-1600
B2=81
B=√81
B=9
так как AB и CD равны как противолежащие стороны прямоугольник, то AB=CD=9 см.
Найдём площадь прямоугольника по формуле: S=ab; S= 40x9=360 см2
угол α расположен между сторонами "c" и "b".
По теореме косинусов:
a²=c²+b²-2*c*b*Cosα или 27²=с²+81+с*18*(-√2/2) так как
Cos135= -Cos45= -√2/2. Отсюда
с²-9√2*с-648=0.
c=(-9√2+√(162+2592)/2 =(-9√2+√2754)/2≈ 20.
По теореме синусов: a/Sin135=b/Sinβ=c/Sinγ, отсюда
Sinβ=b*Sinα/a.
Sin135=Sin(180°-45°) = Sin45 =√2/2.
Sinβ=9*√2/(2*27)=√2/6 ≈0,236.
β=arcsin(0,236) ≈ 13,7° тогда
γ=180-(135+13,7)=31,3°
Или так:
Sinγ=c*Sinα/a или Sinγ=20*0,7/27=0,52.
γ=arcsin(0,52) ≈ 31,3°.
ответ: с=20. β=arcsin(0,236) ≈ 13,7°. γ=arcsin(0,52) ≈ 31,3°.
Проверка по углам: 135°+13,7°+31,3°=180°.