Ромб - это параллелограмм, у которого все стороны равны (докажите сами). То есть ромб является параллелограммом.
<AOE = <ACB (как соответственные углы при ||-ных прямых OE и BC и их секущей AC).
Тогда треугольники ACB и AOE подобны по двум углам (<A=<A, <AOE=<ACB),
тогда их стороны пропорциональны, то есть:
AC/AO = BC/EO = AB/AE. (*)
Треугольники AOB и COD равны (докажите сами), тогда
AO = CO, тогда
AC/AO = (AO+CO)/AO = 2AO/AO = 2.
Тогда из (*):
2 = BC/EO, отсюда EO = (1/2)*BC,
Но у ромба все стороны равны, то есть BC = DC, поэтому
EO = (1/2)*BC = (1/2)*DC.
Ч. т. д.
№8Так как CD параллельно BK, следовательно, что угол АСP=ABK-PCD=90-60=30градусов
№9Углы AOC и DOB равны (как вертикальные), углы ACO и ODB равны (как накрестлежащие при двух параллельных прямых и секущей CD), CO=OD (по условию) => треугольники ACO и BOD равны (по стороне и двум прилежащим к ней углам)
=> AO=OB, AC=DB. Периметр BOD = BO+OD+BD=AO+CD/2+AO+3=22 (по условию) => AO=(22-3-9)/2=5
AC=BD=AO+3=5+3=8
№10т.к. АВ II СД и АВ=СД, то четырехугольник АВСД параллелограмм. (АД II и = ВС)
№11EDC=x
ABC=2x
x+2x=90°
х=30
ABC=60°
№12 Раз AD=DM, угол MAD равен углу AMD. Углы AMD и MAC равны как внутренние накрест лежащие при пересечении параллельных прямых. Следовательно, равны углы MAD и MAC, откуда следует, что AM - биссектриса угла A треугольника ABC. Аналогично доказывается, что CM - биссектриса угла C.