В голову приходит только один Это который применяли в древнем Египте при построении прямого угла.
Делили веревку на 12 частей. Затем 3 части брали на один катет, 4 - на другой, и 5 на гипотенузу. Соединяли края веревки и натягивали по отметкам. Получался прямоугольный треугольник.
В этой задаче один из катетов известен. Если это катет, пропорциональный трем, то сумму длин гипотенузы и второго катета делят на 9. Берут 4 части на второй катет, 5 остается на гипотенузу.
Если известный катет 4, то задача облегчается, так как сумму катета и гипотенузы делить на 8 легче.
В любом случае отношение сторон в этом треугольнике будет 3:4:5.
Хотя есть не одна тройка чисел, которые могут составить прямоугольный треугольник. Например, 5, 12 и 13, но тот, что называется египетским, самый простой.
Угол между плоскостью основания и противолежащей вершиной другого основания - это угол ОКС. Поскольку все ребра перпендикулярны основаниям, то треугольник КОС - прямоугольный с прямым углом С. И поскольку угол ОКС = 30 градусов, то катет ОС равен половине гипотенузы ОК как катет, что лежит против угла 30 градусов. ОК = 2СО = 6*2 = 12 см. Из теоремы Пифагора: CK^2 = OK^2 - OC^2, CK^2 = 12^2 - 6^2 = 144 - 36 = 108, CK = 6 корней из 6. Из правильного треугольника АВС: высота СК = 6 корней из 3, которая является также и медианой, поэтому АК = КВ = СВ/2. Из прямоугольного треугольника СКВ: угол СВК = 60 градусов как угол правильного треугольника. По теореме синусов: СК/sin(CBK) = CB/sin(CKB), CB = 12. Площадь треугольника равна 36 корней из 3 см^2. Объем призмы равен площади основания, умноженного на высоту: V = So*H = S(ABC)*OC = 108 корней из 3 см^3.
В голову приходит только один Это который применяли в древнем Египте при построении прямого угла.
Делили веревку на 12 частей. Затем 3 части брали на один катет, 4 - на другой, и 5 на гипотенузу. Соединяли края веревки и натягивали по отметкам. Получался прямоугольный треугольник.
В этой задаче один из катетов известен. Если это катет, пропорциональный трем, то сумму длин гипотенузы и второго катета делят на 9. Берут 4 части на второй катет, 5 остается на гипотенузу.
Если известный катет 4, то задача облегчается, так как сумму катета и гипотенузы делить на 8 легче.
В любом случае отношение сторон в этом треугольнике будет 3:4:5.
Хотя есть не одна тройка чисел, которые могут составить прямоугольный треугольник. Например, 5, 12 и 13, но тот, что называется египетским, самый простой.