Площадь боковой поверхности цилиндра:
Sбок = 2πRH
По условию H = R - 2,
2πR(R - 2) = 160π
R(R - 2) = 80
R² - 2R - 80 = 0 по тоереме Виета:
R = 10 или R = - 8 (не подходит по смыслу задачи)
Н = R - 2 = 8 см
а) Осевое сечение - прямоугольник, стороны которого равны диаметру основания и высоте цилиндра:
Sос. сеч. = 2R · H = 2 · 10 · 8 = 160 см²
б) Сечение цилинра, параллельное оси, имеет форму прямоугольника, одна сторона которого равна высоте. Найдем другую сторону (АВ).
ΔАОВ равнобедренный (АО = ВО как радиусы). Проведем ОС⊥АВ, ОС = 6 см по условию. ОС является так же медианой, ⇒ АС = ВС.
ΔАОС: ∠АСО = 90°, по теореме Пифагора:
АС = √(АО² - ОС²) = √(10² - 6²) = √(100 - 36) = √64 = 8 см
АВ = 2АС = 16 см
Sсеч = AB · H = 16 · 8 = 128 см²
Объяснение:
1
S=0,6
b=1,4
c=1,2
sinA=h1/b
S=1/2×c×h1
2S=c×h1
h1=2S/c=2×0,6/1,2=1
sinA=1/1,4=0,7
<A=45
sinC=h2/a
S=1/2×b×h2
2S=b×h2
h2=2S/b=2×0,6/1,4=0,86
a=корень (b^2+c^2-2×bc×cosA) =
=корень (1,4^2+1,2^2-2×1,4×1,2×соs45)=
=корень (3,4-2×1,4×1,2×(корень2/2)=
=корень (3,4-1,68корень2)=
=корень 1=1
sinC=0,86/1=0,86
<C=60 градусов
<В=180-<А-<С=180-45-60=75 градусов
ответ : <А=45 ; <В=75 ; <С=60
2
R=AB/2×sinC=4/2×sin30=4/2×1/2=4 cм
3
<D=180-<A=180-50=130 градусов
CD=AB=8 cм
АС=корень (АD^2+CD^2-2×AD×CD×cosD)=
=корень(14^2+8^2-2×14×8×cos130)=
=корень (196+64-224×соs130)=
=корень (260-224×cos130)
BD=корень (АВ^2+АD^2-2×AB×AD×cosA)=
=корень (8^2+14^2-2×8×14×сos50)=
=корень (260-224×cos50)
АС=корень (260-224cos130)
BD=корень (260-224cos50)