Смотрите, что надо сделать, чтобы решение само по себе возникло:)))
Пусть треугольник АВС, АС - основание, АВ = ВС;
Ясно, что если внешний угол 60, то внутренний 120, и это угол при вершине, а углы при основании равны 60/2 = 30 градусов.
(Не может быть 120 - угол при основании :))- это я так, на всякий случай.)
Продлите сторону СВ за вершину В, и из точки А проведите перпендикуляр к этой прямой. Пусть точка пересечения К. Тогда треугольник КАС - прямоугольный, в нем известен острый угол КСА = 30 градусов, и катет АК = 17 :))) А найти надо гипотенузу АС. Поэтому ответ 34 :)))
1) возможны 2 случая:
а) угол 150° лежит между данными сторонами, тогда
S=1/2*2*7*sin150°=7*1/2=3.5(см²)
б) угол 150° лежит против стороны 7 см, тогда:
Найдем угол лежащий против стороны 2 (см)
7/sin150°=2/sinα
sinα=(1/2*2)/7=1/7
cosα=(1-1/49)=√48/7=4√3/7
По теореме косинусов находим третью сторону треугольника:
4=49+x²-2*7*x*4√3/7
x²+8x√3+45=0
x1=5√3 - посторонний корень
x2=3√3
Тогда S=1/2*7*3√3*1/7=3√3/2 (см²)