a) Параллельные отсекают от угла подобные треугольники.
Отношение площадей подобных фигур равно квадрату коэффициента подобия.
MBN~ABC, MN/AC=1/2, S(MBN)= 1/4 S(ABC)
EBF~ABC, EB/AB=1/3, S(EBF)= 1/9 S(ABC)
S(MEFN) =S(MBN)-S(EBF) =(1/4 -1/9)S(ABC) =5/36 S(ABC)
б) Площади треугольников с равным углом относятся как произведения прилежащих сторон.
S(DBK)/S(ABC) =DB*BK/AB*BC =DB/AB *BK/BC =1/3 *4/7 =4/21
S(KCM)/S(BCA) =KC*CM/BC*CA =3/7 *1/4 =3/28
S(MAD)/S(CAB) =MA*AD/CA*AB =3/4 *2/3 =1/2
S(DKM) =S(ABC)-S(DBK)-S(KCM)-S(MAD) =
(1 -4/21 -3/28 -1/2)S(ABC) =(84-16-9-42)/84 *S(ABC) =17/84 S(ABC)
Дано :
Четырёхугольник ABCD — параллелограмм.
S(ABCD) = 36 см².
Точка О — точка пересечения диагоналей АС и BD.
ОН — расстояние от точки О до CD, OH = 3 см.
ОМ — расстояние от точки О до AD, AD = 2 см.
Найти :
Р(ABCD) = ?
Расстояние от точки пересечения диагоналей параллелограмма до стороны в два раза меньше соответствующий высоте (высоте, которая проведена к этой же стороне).
Следовательно —
Высота МF = 2*OM = 2*2 см = 4 см
Высота ЕН = 2*ОН = 2*3 см = 6 см.
Площадь параллелограмма равна произведению стороны и высоты, опущенной на эту сторону.
Отсюда —
S(ABCD) = MF*AD
36 см² = 4 см*AD
AD = 36 см²/4 см = 9 см
S(ABCD) = ЕН*CD
36 см² = 6 см*CD
CD = 36 см²/6 см = 6 см.
Периметр параллелограмма равен удвоенной сумме двух его смежных сторон.
Следовательно —
P(ABCD) = 2*(CD + AD) = 2*(6 см + 9 см) = 2*15 см = 30 см.
30 см.
угол ADB=угол CDB =180/2=90, ВD - высота, биссектриса, если в треугольнике высота=биссектрисе проведенная к основе то треугольник равнобедренный