Рассмотрим треугольник ANC. Угол ACN равен половине угла ACB, т.к. образован биссектрисой CN.
Угол CAN равен углу ACB, т.к. по условию треугольник ABC равнобедренный с основанием AC.
Как известно сумма углов треугольника равна 180 градусам, следовательно CAN + ACN + CNA = 180. Выразим углы CAN и ACN через ACB и подставим известное значение угла CNA, получим ACB + ACB / 2 + 78 = 180. Решим полученное уравнение:
Построим параллелограмм АВСД проведем диагонали АС и ВД так что цент пресечения диагоналей О удален от стороны АВ на 2 см от стороны ВС на 3 см. Так как точка пресечения диагоналей является центром симметрии параллелограмма, то высота параллелограмма к стороне АВ равна 2*2=4 см, а к стороне ВС 3*2=6 см. Площадь параллелограмма равна S= a*h (где а – сторона h – высота проведенная к ней). Выразим из этой формулы строну а=S/h Сторона АВ=24/4=6 см Сторона ВС=24/6=4 см Периметр параллелограмма равен P=(a+b)*2 (где а и в стороны параллелограмма) P=(AB+BC)*2=(6+4)*2=20 см
Поскольку DE=EC тогда триугольник DEC равнобедренный.
Итак EF - бисектриса
Тогда угол FED = 115/2=57.5°