Расстояние от точки до прямой - длина перпендикуляра, опущенного из точки на прямую. Отрезок FB перпендикулярен плоскости квадрата AВСD, значит перпендикулярен прямым АВ, ВС и BD, лежащим в плоскости. Так как отрезок FB пересекает их, то расстояние до сторон АВ и ВС, а так же и до диагонали BD равно длине отрезка FB и равно 8 дм.
ВА⊥AD как стороны квадрата, ВА - проекция наклонной FA на плоскость АВС, значит FA⊥AD по теореме о трех перпендикулярах. Значит, FA - расстояние от точки F до прямой AD. Из ΔABF по теореме Пифагора: FA = √(AB² + FB²) = √(16 + 64) = √80 = 4√5 (дм)
ВС⊥CD как стороны квадрата, ВС - проекция наклонной FС на плоскость АВС, значит FС⊥СD по теореме о трех перпендикулярах. Значит, FС - расстояние от точки F до прямой СD. ΔАBF = ΔCBF по двум катетам (АВ = ВС как стороны квадрата, BF - общая), тогда FC = FA = 4√5 дм.
ВО⊥АС, так как диагонали квадрата перпендикулярны, ВО - проекция FO на плоскость АВС, значит FO⊥AC по теореме о трех перпендикулярах. FO - расстояние от точки F до прямой АС. ВО = BD/2 = 4√2/2 = 2√2 дм как диагональ квадрата, Из ΔFBO по теореме Пифагора: FO = √(FB² + BO²) = √(64 + 8) = √72 = 6√2 дм
Вписанный угол, который опирается на диаметр, равен 90 градусов. Углы К и F следовательно равны 90 градусов. Треугольники MKN и MFN - прямоугольные. Они равны по общей гипотенузе и катету KN = FN. А в равных треугольниках против равных сторон лежат равные углы. Против стороны FN лежит угол FMN, а против стороны KN лежит угол KMN. Стороны равны, значит равны и углы. Но, если 2 угла одного треугольника соответственно равны двум углам другого треугольника, то и третьи углы у них равны. Значит, угол MNF равен углу MNK.
да подобный ему ну может быть не АВС ,но А1В1С1 возможно вполне