Для того, чтобы найти площадь прямоугольника мы должны найти длины сторон прямоугольника.
S = a * b;
Из условия нам известно, что периметр прямоугольника равен 80 см, а отношение сторон равно 2 : 3.
Вводим коэффициент подобия k и записываем длины сторон как 2k и 3k.
P = 2(a + b);
Составляем уравнение применив формулу для нахождения периметра:
2(2k + 3k) = 80;
2k + 3k = 80 : 2;
5k = 40;
k = 40 : 5;
k = 8.
Итак, стороны равны 2 * 8 = 16 см и 3 * 8 = 24 см.
Ищем площадь прямоугольника:
S = a * b = 16 * 24 = 384 см2.
Объяснение:
примерно так
тогда
ВМ = МС, В1М1 = М1С1 (АМ и А1М1 - медианы),
а раз ВС = В1С1, то все педидущие четыре отрезка равны:
ВМ = МС = В1М1 = М1С1
далее уголВ = углуВ1(соответствующие углы равных треугольников)
АВ = А1В1 (соответствующие стороны равных треугольников)
на основании выше изложенного делаем вывод, что тр.АВМ = тр.А1В1М1(по двум сторонам и углу между ними)
а уже на основании равенства треугольников АВМ и А1В1М1 делаем вывод о равенстве наших медиан АМ и А1М1, что и требовалось доказать