Площади четырёхугольников и треугольников Повторить параграфы 22,23,24.Выполнить No58 первый столбик (а,в,джи,л),обязательно выполнить чертеж, писать формулу и пояснения НАДО
1. средние линии треугольника находятся втом же отношении, что и стороны треугольника. обозначим стороны треугольника буквами а, в и с. тогда а: в: с=2: 3: 4, т.е. а=2х, в=3х, с=4х по условию, периметр р=45см, т.е. а+в+с=45 2х+3х+4х=45 9х=45 х=45: 9 х=5(см) а=2х=2*5=10(см) в=3х=3*5=15(см) с=4х=4*5=20(см) ответ: 10 см, 15 см, 20 см.
Пусть основание равно 6х, тогда боковая сторона равна 5х. Высота к основанию равнобедренного треугольника является также медианой, значит делит основание на части по 3х каждая. Запишем теорему Пифагора для одного из прямоугольных треугольников:
Основание равно 6х=6*2,5=15, боковые стороны равны 5x=12,5. Площадь треугольника с одной стороны равна полупроизведению высоты на основание S=1/2*15*10=75. С другой стороны площадь треугольника равна произведению длин сторон разделить на четыре радиуса описанной окружности, то есть: