Окружность, вписанная в треугольник АВС с периметром, равным 20 см, делит точкой касания сторону АС на отрезки АК = 5 см, КС = 3 см. Определите, каким является треугольник: остроугольным, тупоугольным или прямоугольным?
Объяснение:
По т. об отрезках касательных АК=АР=5 см, СК=СМ=3 см.
Р=АВ+ВС+АС ,
20=(5+ВР)+(3+ВМ)+(5+3),
4=ВР+ВМ , но ВР=ВМ, тогда ВР=ВМ=2 см.
АВ= 7 см, ВС=5 см, АС=8 см .
Проверим условие а²+в² ....?....c²
7²+5²=49+25=74
8²=64 , 74>64 значит ΔАВС-остроугольный т.к. " Если квадрат наибольшей стороны меньше суммы квадратов двух других сторон:
с² < a²+b² треугольник остроугольный. "
1) Я эту букву по середине не понял так что будет O
ABO = DOC, по двум сторонам и углу между ними, стороны равны по условию, а углы вертикальные;
4) BCD = ABD, по двум сторонам и углу между ними, одна сторона и угол равны по условию, а сторона BD общая;
7) NPK = MNK, по трём сторонам, две равны по условию, третья общая;
10) Треугольник ABC равнобедренный, это следует из условия, обозначим точку пересечения отрезков AD и BE как точку O. Треугольник ABO равнобедренный так как уголки данные из задания равны то и большие углы CBA и CAB равны то есть и углы OBA и OAB равны. Из этого следует что стороны AO и BO равны.
BDO и AOE равны по стороне и двум углам прилежащим к ней, один угол равен по условию, второй вертикальный, а сторону мы доказали.
Объяснение:
1. Треугольники равны по сторонам AO и OC, DO и OB + углы DOC и AOB,которые равны по свойству вертикальных углов
4. По свойству параллельных прямых (BC и AD), углы ABD и DBC равны , 2 ранвых угла и две равные стороны
7. По свойству параллельных прямых, углы MKN и KNP равны+ это параллелограмм, по его свойствам
2 общих стороны и один общий ушол
10.
Углы EFA и BFD равны как вертикальные,а AE и BD составляют одинаковое расстояние от равных сторон AC и BC
Поэтому BD=AE
Равны по двум равным углам и одной равной стороне
Обозначим точки касания сторон АВ и ВС окружности – точки О и М соответственно.
Отрезки касательных, проведённых из одной точки к окружности, равны.
Следовательно: АО=АК=5 см, СМ=СК=3 см, ВО=ВМ.
Р(∆АВС)=АВ+ВС+АС= (АО+ОВ)+(ВМ+МС)+(АК+КС)= 5+ОВ+ВМ+3+5+3= 16+ОВ+ВМ
Р(∆АВС)=20 см по условию, тогда:
16+ОВ+ВМ=20
ОВ+ВМ=4
ОВ=2 см, ВМ=2 см.
Исходя из этого:
АВ=АО+ОВ=5+2=7 см
ВС=ВМ+МС=2+3=5 см
АС=АК+КС=5+3=8 см.
Проверим по следствиям теоремы Пифагора:
Если квадрат большей стороны равен сумме квадратов двух других сторон, то треугольник прямоугольный.
Если квадрат большей стороны больше суммы квадратов двух других сторон, то треугольник тупоугольный.
Если квадрат большей стороны меньше суммы квадратов двух других сторон, то треугольник остроугольный.
АВ²=7²=49, ВС²=5²=25, АС²=8²=64
64<49+25
64<74
Верно, следовательно ∆АВС – остроугольный.
ответ: остроугольный.