Прямая пересекает стороны треугольника АВС в точках М и К соответственно так, что МК||АС, ВМ : AM = 1 : 4. Найдите периметр треугольника ВМК, если периметр треугольника АВС равен 25 см. (Желательно с чертежом)
Нет, ни шестиугольник, ни семиугольник не могут быть гранями правильного многогранника . ими могут быть правильные треугольники, квадраты, либо пятиугольники. других вариантов нет дело в том, что угол правильного n-угольника ( n≥6 ) меньше 120° но при каждой вершине должно быть не меньше 3 плоских углов и если бы такой правильный многогранник при n≥6 существовал, то сумма плоских углов при каждой вершине была ≥3•120°=360° но этого не может быть, потому как сумма всех плоских углов выпуклого многогранника при каждой вершине < 360°
Нет, ни шестиугольник, ни семиугольник не могут быть гранями правильного многогранника . ими могут быть правильные треугольники, квадраты, либо пятиугольники. других вариантов нет дело в том, что угол правильного n-угольника ( n≥6 ) меньше 120° но при каждой вершине должно быть не меньше 3 плоских углов и если бы такой правильный многогранник при n≥6 существовал, то сумма плоских углов при каждой вершине была ≥3•120°=360° но этого не может быть, потому как сумма всех плоских углов выпуклого многогранника при каждой вершине < 360°
треугольник BMK подобен треугольнику BAC (угол В общий, угол BMK = углу BAC (т.к. MK || АС) ).
Т.к. ВМ: АМ= 1 : 4, то AM = 4BM, следовательно AB = 5BM.
В силу подобия треугольников получаем, что и остальные стороны треугольника ABC в 5 раз больше сторон треугольника ВМК.
Периметр треугольника ВМК = BM + MK + BK
Периметр треугольника ABC = AB + BC + AC = 5BM + 5MK + 5BK = 5(BM + MK + BK) = 25 (см)
Значит периметр треугольника ВМК = 25 : 5 = 5 (см)
Объяснение: