Чертим пирамиду, диагонали основания (АС) и (ВD), высоту пирамиды SO. О - точка пересечения (АС) и (ВD) и центр квадрата АВСD. Треугольник АSC равен треугольнику АВС по трем сторонам. Значит треугольник ASC прямоугольный равнобедренный. АС=sqrt(2), AO=OC=OS=sqrt(2)/2. Все боковые грани пирамиды равносторонние треугольники со стороной 1. Апофемы пирамиды равны высотам этих треугольников и равны sqrt(3)/2. Проведем сечение через вершину пирамиды S и середины ребер AD (точка М) и ВС (точка N). Угол между АВ и плоскостью треугольника SAD равен углу между АВ и SM, значит равен углу между SM и NM или углу SMO. Из треугольника SOM получаем: cos(SMO)=(1/2)/sqrt(3)/2=1/sqrt(3)=sqrt(3)/3.
Итак, расстояние между прямой и плоскостью это перпендикуляр опущенный с любой точки прямой на плоскость. Допустим на прямой эта точка будет В , а на плоскости это будет точка Х. Теперь с этой же точки опускаем перпендикуляр на сторону АД . Пусть это будет точка У . В даном случае ВУ = АВ*синус30= 12*1/2= 6 . Теперь важно понять что у нас образовался треугольник ВУХ где угол ВХУ равно 90 градусов и это означает что он прямоугольный . С условия мы знаем что ХВ=3*корень с 3 . Также мы нашли что ВУ = 6 . Значит отсюда угол между плоскостью ромба и плоскостью альфа равен арккосинус(ВУ/ХВ) . = арккосинус (корень с 3 на 2) = 60 градусовответ 60
1) 180-80=100
угол 80 и х накрестлежащие угля, т.к прямые а и б параллельны
угол 100 и у тоже
х=90 у=100
2) а ||б, значит 52 и F равны- накрестлежащие и угол от Е тоже, значит =52⁰
х=180-52=128
3) сумма углов четырехугольника АВСД=360
180-80=100
360-(40+80+100+С)
С=360-220
С=140
С=у
у=140 - (С и у накрестлежащие)
х=180-140=40
4) 180-50=130
Сумма углов четырехугольника ПЕФК=360
360-(130+145+35+К)
К=360-310=50
50=х- они накрестлежащие