Найдем величины дуг, на которые разделена окружность вершинами треугольника. Пусть меньшая дуга - х, вторая дуга -2х, третья дуга - 3х, т.к. отношение дуг 1:2:3. Тогда х+2х+3х=360 х=60⁰, 2х=120⁰, 3х=180⁰ Углы треугольника по отношению к окружности являются вписанными, т.е. их градусная мера равна 30⁰, 60⁰ и 90⁰ Треугольник прямоугольный, с острым углом в 30⁰, против этого угла лежит меньшая сторона треугольника, равная 17. Катет, лежащий против угла в 30⁰, равен половине гипотенузы. Значит гипотенуза равна 34, эта сторона лежит против угла 90⁰, т.е. это диаметр описанной окружности. Радиус окружности равен 17.
Т.к. АВС - равнобедренный, то углы А и С при основании АС равны. Пусть <A=<C=x. Рассмотрим равнобедренный по условию треугольник CAD. Углы 1 и 2 при его основании CD равны. Значит <C=<2=<1=x. Тогда <BDA=180-<1=180-x. В равнобедренном по условию треугольнике ADB углы 3 и 4 при основании АВ также равны, т.е. <B=<4=<3=(180-<BDA):2=(180-180+x):2=x:2. Таким образом, мы выразили все три угла А, В и С треугольника АВС. Зная сумму углов треугольника, запишем: <A+<B+<C=180 x+x:2+x=180 5x=360 x=72 <A=<C=72°, <B=72:2=36°.
х - одна часть
9х+5х+4х=180 - сумма углов треугольника
х=10
10*9=90 (град) => треугольник прямоугольный, большая сторона - гипотенуза
Медиана, проведённая к гипотенузе, равна её половине:
12,5*2=25 - большая сторона