Якщо до кола з однієї точки проведені дві дотичних, то довжини відрізків дотичних від цієї точки до точок дотику з окружністю рівні:
СА = СВ
Дотична перпендикулярна до радіуса кола, проведеного в точку дотику, значить ∠ОАС = ∠ОВС = 90°.
ΔОАС = ΔОВС за трьома сторонами (ОС - загальна, ОА = ОВ як радіуси, СА = СВ, як було з'ясовано вище.
Значить, ∠АОC = ∠ВОC = ∠BOA/2 = 120/2 = 60°.
З ΔОАС знайдемо ∠АСO = 180−60−90 = 30°.
Якщо катет лежить навпроти кута в 30°, він рівний половині гіпотенузи.
У нашому випадку, катет∠АO лежить навпроти кута ∠АСO в 30° ⇒
⇒ гіпотенуза OC = 2×AO = 2×12 = 24 см.
Відповідь: довжина відрізка СО рівна 24 см.
Рассмотрим 3 треугольника: АСО, СДО и ВДО. Они равны между собой по 3-м одинаковым сторонам (АО=СО=ДО=ВО=радиус; АС=СД=ДВ по условию). Тогда угол АОС=СОД=ДОВ=180/3=60. Эти треуг-ки также равнобедренные. В треугольнике АСО угол САО=АСО=(180-АОС)/2=60. Т.е. они еще и равносторонние. Значит ОВ=АС