∠С=30°,∠А=90°,∠В=60°
Объяснение:
Дано: AD⊥BC, ВО=ОС. ∠ВАD=∠DАО=∠ОАС
Найти: ∠А,∠В,∠С ΔАВС
Пусть ∠ВАD=∠DАО=∠ОАС=х
1) Рассмотрим ΔВАО. АD - высота. ∠ВАD=∠DАО ⇒ АD - биссектриса.
Если в треугольнике медиана совпадает с биссектрисой, то треугольник равнобедренный. ⇒ΔВАО - равнобедренный. В равнобедренном треугольнике высота является также медианой. ⇒
ВD=DО= ВО=
ОС.
2) Дополнительное построение: Проведём ОМ⊥АС.
Рассмотрим прямоугольные треугольники АDО и АМО.
∠DАО=∠ОАС - по условию, АО - общая.
Если гипотенуза и острый угол одного треугольника соответственно равны гипотенузе и острому углу другого треугольника, то такие прямоугольные треугольники равны.⇒ΔАDО = ΔАМО
Из равенства треугольников следует равенство катетов:
DО = МО = ВО=
ОС.
3) Рассмотрим прямоугольный треугольник ОМС (∠М=90°).
Из доказанного выше МО=ОС. Т.е. катет МО равен половине гипотенузы ОС.
Следовательно ∠С=30°
4) Рассмотрим прямоугольный треугольник АDC(∠D=90°).
По свойству острых углов прямоугольного треугольника
∠DАС=90°-∠С=90°-30°=60°.
По условию ∠DАС=2х ⇒ 2х=60°, х=30°
5) ∠ВАС=3х=3*30°=90°
∠А треугольника АВС = 90°
Так как сумма углов треугольника равна 180°, то ∠В треугольника АВС будет равен: ∠В=180°-∠А-∠С=180°-90°-30°=60°
Рассмотрим треугольник АВЕ:
Угол АЕВ=90 градусов, Гипотенуза АВ=32 см, Катет АЕ=16 см (по условию задачи)
По теореме Пифагора найдем второй катет (высоту):
ВЕ= √(АВ^2-АЕ^2)= √(32^2-16^2)= √(1024-256)= √768 см.
Теперь рассмотрим треугольник BДE:
ДЕ=АД-АЕ=40-16=24 см. ВЕ=√768 см. Угол ВЕД=90 градусов
По теореме Пифагора найдем ВД:
ВД=√(ВЕ^2+ВД^2)= √((√768)^2+24^2))= √(768+576)= √1344=8√21 см или приблизительно 36,66 см.
ответ: расстояние между вершинами тупых углов равно 8√21 см